4,062 research outputs found

    A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite

    Full text link
    In recent years intercalated and pillared graphitic systems have come under increasing scrutiny because of their potential for modern energy technologies. While traditional \emph{ab initio} methods such as the LDA give accurate geometries for graphite they are poorer at predicting physicial properties such as cohesive energies and elastic constants perpendicular to the layers because of the strong dependence on long-range dispersion forces. `Stretching' the layers via pillars or intercalation further highlights these weaknesses. We use the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201 (2006)] as a starting point to show that the asymptotic C3D−3C_3 D^{-3} dependence of the cohesive energy on layer spacing DD in bigraphene is universal to all graphitic systems with evenly spaced layers. At spacings appropriate to intercalates, this differs from and begins to dominate the C4D−4C_4 D^{-4} power law for dispersion that has been widely used previously. The corrected power law (and a calculated C3C_3 coefficient) is then unsuccesfully employed in the semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70}, 205431 (2004)] (HN). A modified, physicially motivated semiempirical method including some C4D−4C_4 D^{-4} effects allows the HN method to be used successfully and gives an absolute increase of about 2−32-3% to the predicted cohesive energy, while still maintaining the correct C3D−3C_3 D^{-3} asymptotics

    Interference between Gamow-Teller and Fermi Interaction in M n

    Full text link

    A high-reflectivity high-Q micromechanical Bragg-mirror

    Get PDF
    We report on the fabrication and characterization of a micromechanical oscillator consisting only of a free-standing dielectric Bragg mirror with high optical reflectivity and high mechanical quality. The fabrication technique is a hybrid approach involving laser ablation and dry etching. The mirror has a reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse of 500 has been achieved. This is an important step towards designing tunable high-Q high-finesse cavities on chip.Comment: 3 pages, 2 figure

    Investigations of fast neutron production by 190 GeV/c muon interactions on different targets

    Get PDF
    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon, copper and lead targets. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.Comment: 19 pages, 11 figures ep

    Determination of Strong-Interaction Widths and Shifts of Pionic X-Rays with a Crystal Spectrometer

    Get PDF
    Pionic 3d-2p atomic transitions in F, Na, and Mg have been studied using a bent crystal spectrometer. The pionic atoms were formed in the production target placed in the external proton beam of the Space Radiation Effects Laboratory synchrocyclotron. The observed energies and widths of the transitions are E=41679(3) eV and Γ=21(8) eV, E=62434(18) eV and Γ=22(80) eV, E=74389(9) eV and Γ=67(35) eV, in F, Na, and Mg, respectively. The results are compared with calculations based on a pion-nucleus optical potential

    Nuclear deformation and neutrinoless double-β\beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd nuclei in mass mechanism

    Full text link
    The (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+→0+0^{+}\to 0^{+} transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the β−β−\beta ^{-}\beta ^{-} decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced B(E2B(E2:0+→2+)0^{+}\to 2^{+}) transition probabilities, quadrupole moments Q(2+)Q(2^{+}), gyromagnetic factors g(2+)g(2^{+}) as well as half-lives T1/22νT_{1/2}^{2\nu} for the 0+→0+0^{+}\to 0^{+} transition and the available experimental data. In the present work, we study the (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay for the 0+→0+0^{+}\to 0^{+} transition in the mass mechanism and extract limits on effective mass of light as well as heavy neutrinos from the observed half-lives T1/20ν(0+→0+)T_{1/2}^{0\nu}(0^{+}\to 0^{+}) using nuclear transition matrix elements calculated with the same set of wave functions. Further, the effect of deformation on the nuclear transition matrix elements required to study the (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay in the mass mechanism is investigated. It is noticed that the deformation effect on nuclear transition matrix elements is of approximately same magnitude in (β−β−)2ν(\beta ^{-}\beta ^{-})_{2\nu} and (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay.Comment: 15 pages, 1 figur

    Scalar sextet in the 331 model with right-handed neutrinos

    Full text link
    A Higgs sextet is introduced in order to generate Dirac and Majorana neutrino masses in the 331 model with right-handed neutrinos. As will be seen, the present sextet introduction leads to a rich neutrino mass structure. The smallness of neutrino masses can be achieved via, for example, a seesaw limit. The fact that the masses of the charged leptons are not effected by their new Yukawa couplings to the sextet is convenient for generating small neutrino masses.Comment: RevTeX4, 5 pages, no figure. To appear in Phys. Rev. D. Misprints removed (v.2
    • …
    corecore