366 research outputs found

    Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap

    Full text link
    In the endeavour to scale up the number of qubits in an ion-based quantum computer several groups have started to develop miniaturized ion traps for extended spatial control and manipulation of the ions. Shuttling and separation of ion strings have been the foremost issues in linear-trap arrangements and some prototypes of junctions have been demonstrated for the extension of ion motion to two dimensions (2D). While junctions require complex trap structures, small extensions to the 1D motion can be accomplished in simple linear trap arrangements. Here, control of the extended field in a planar, linear chip trap is used to shuttle ions in 2D. With this approach, the order of ions in a string is deterministically reversed. Optimized potentials are theoretically derived and simulations show that the reordering can be carried out adiabatically. The control over individual ion positions in a linear trap presents a new tool for ion-trap quantum computing. The method is also expected to work with mixed crystals of different ion species and as such could have applications for sympathetic cooling of an ion string.Comment: 18 pages, 9 figures. Added section on possibility of adiabatic turn. Added appendix on point charge model. Other minor alterations/clarifications. Version now published (http://www.iop.org/EJ/abstract/1367-2630/11/10/103008

    Process tomography of ion trap quantum gates

    Get PDF
    A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this paper, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude--shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates

    Coherence length of an elongated condensate: a study by matter-wave interferometry

    Full text link
    We measure the spatial correlation function of Bose-Einstein condensates in the cross-over region between phase-coherent and strongly phase-fluctuating condensates. We observe the continuous path from a gaussian-like shape to an exponential-like shape characteristic of one-dimensional phase-fluctuations. The width of the spatial correlation function as a function of the temperature shows that the condensate coherence length undergoes no sharp transition between these two regimes.Comment: 8 pages, 6 figure, submitted to EPJ

    Breakdown of superfluidity of an atom laser past an obstacle

    Full text link
    The 1D flow of a continuous beam of Bose-Einstein condensed atoms in the presence of an obstacle is studied as a function of the beam velocity and of the type of perturbing potential (representing the interaction of the obstacle with the atoms of the beam). We identify the relevant regimes: stationary/time-dependent and superfluid/dissipative; the absence of drag is used as a criterion for superfluidity. There exists a critical velocity below which the flow is superfluid. For attractive obstacles, we show that this critical velocity can reach the value predicted by Landau's approach. For penetrable obstacles, it is shown that superfluidity is recovered at large beam velocity. Finally, enormous differences in drag occur when switching from repulsive to attractive potential.Comment: 15 pages, 6 figure

    Robust entanglement

    Full text link
    It is common belief among physicists that entangled states of quantum systems loose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca+^+ ions and observe robust entanglement lasting for more than 20 seconds

    Trapped-ion probing of light-induced charging effects on dielectrics

    Full text link
    We use a string of confined 40^{40}Ca+^+ ions to measure perturbations to a trapping potential which are caused by light-induced charging of an anti-reflection coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterised as a function of distance to the dielectric, and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 4040 elementary charges per Hz\sqrt{\mathrm{Hz}} on the dielectric at distances of order millimetres, and perturbations are observed for illumination with light of wavelengths as long as 729\,nm. This has important implications for the future of miniaturised ion-trap experiments, notably with regards to the choice of electrode material, and the optics that must be integrated in the vicinity of the ion. The method presented can be readily applied to the investigation of charging effects beyond the context of ion trap experiments.Comment: 11 pages, 5 figure

    Dynamics of Macroscopic Wave Packet Passing through Double Slits: Role of Gravity and Nonlinearity

    Full text link
    Using the nonlinear Schroedinger equation (Gross-Pitaevskii equation), the dynamics of a macroscopic wave packet for Bose-Einstein condensates falling through double slits is analyzed. This problem is identified with a search for the fate of a soliton showing a head-on collision with a hard-walled obstacle of finite size. We explore the splitting of the wave packet and its reorganization to form an interference pattern. Particular attention is paid to the role of gravity (g) and repulsive nonlinearity (u_0) in the fringe pattern. The peak-to-peak distance in the fringe pattern and the number of interference peaks are found to be proportional to g^(-1/2) and u_0^(1/2)g^(1/4), respectively. We suggest a way of designing an experiment under controlled gravity and nonlinearity.Comment: 10 pages, 4 figures and 1 tabl

    Highly anisotropic Bose-Einstein condensates: crossover to lower dimensionality

    Full text link
    We develop a simple analytical model based on a variational method to explain the properties of trapped cylindrically symmetric Bose-Einstein condensates (BEC) of varying degrees of anisotropy well into regimes of effective one dimension (1D) and effective two dimension (2D). Our results are accurate in regimes where the Thomas-Fermi approximation breaks down and they are shown to be in agreement with recent experimental data.Comment: 4 pages, 2 figures; significantly more new material added; title and author-list changed due to changes in conten

    Spatially-resolved potential measurement with ion crystals

    Full text link
    We present a method to measure potentials over an extended region using one-dimensional ion crystals in a radio frequency (RF) ion trap. The equilibrium spacings of the ions within the crystal allow the determination of the external forces acting at each point. From this the overall potential, and also potentials due to specific trap features, are calculated. The method can be used to probe potentials near proximal objects in real time, and can be generalized to higher dimensions.Comment: 7 pages (double spaced), 3 figure
    • …
    corecore