101 research outputs found

    Origin of magnetism and quasiparticles properties in Cr-doped TiO2_2

    Full text link
    Combining LSDA+UU and an analysis of superexchange interactions beyond DFT, we describe the magnetic ground states in rutile and anatase Cr-doped TiO2_2. In parallel, we correct our LSDA+UU ground state through GW corrections (GWGW@LSDA+UU) that reproduce the position of impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange.Comment: 5<pages, 4 figure

    Malfunction and Bad Behavior Diagnosis on Domestic Environment

    Get PDF
    Abstract Greenhouse gas emissions from homes arise primarily from fossil fuels burned for heat, the use of products that contain greenhouse gases, and the handling of waste. Human activities are responsible for almost all of the increase in greenhouse gases in the atmosphere over the last 150 years. The household sector is one of the biggest aggregate consumers and this is the reason why increasingly policies have been considering it. One of the key factors in curbing energy consumption in this sector is widely recognized to be due to erroneous behaviors and systems malfunctioning, mainly explained by the lack of awareness of the final user; so, training the final user to energy awareness can be more effective and cheaper than other policies. In this context, energy management in homes is playing, and will play even more in future, a key role in increasing the final consumer awareness towards its own energy consumption and consequently in bursting its active role in smart grids. The aim of this paper is to highlight the economic benefits of low cost intelligent control domestic devices, to identify energy behavior, system status and improve energy efficiency. The scope is to develop interaction between final users to create a network of energy consumption efficiency. The paper presents an application of Multi-scale Principal Component Analysis to diagnose inefficient occupant behavior and systems malfunctioning and suggest good practices of energy conservation

    In vitro biological effects of raw and thermally treated asbestos-containing materials

    Get PDF
    Asbestos cement, the main asbestos-containing material (ACM) manufactured in Italy in the past, is a health hazard whose elimination is a priority concern. Asbestos fibers can be transformed into potentially non-hazardous silicates by high-temperature treatment via complete solid-state transformation. In this study human A549 cells were directly exposed to raw cement asbestos (RCA), chrysotile and cement asbestos subjected to an industrial process at 1200 °C (HT-CA) and raw commercial grey cement (GC) for 24 and 48h, or treated with conditioned culture medium up to 96 h. In our previous studies we demonstrated that the final product of heat treatment of cement asbestos was considerably more inert and had lower cytotoxic potential than the original asbestos material. However, to better evaluate the risks of interactions with the materials, further in vitro investigations were performed concerning fiber-cell superficial interactions, immuno-hystochemical expression of cytochines p53, p53 homologue p73, TNF-related apoptosis- inducing ligand (TRAIL), and conditioned medium effects on cell viability. Data showed more severe cytotoxic damage by raw cement-asbestos compared to the heat treated materials and different expressions of cytochines that exert critical role in regulating the cell response to asbestos-induced DNA damage. These data should be taken in consideration for a safe recycling of thermal transformed asbestos materials

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing

    Tessuti dell'occhio

    No full text
    corecore