45 research outputs found

    The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study.

    Get PDF
    RATIONALE: Reversal learning requires associative learning and executive functioning to suppress non-adaptive responding. Reversal-learning deficits are observed in e.g. schizophrenia and obsessive-compulsive disorder and implicate neural circuitry including the orbitofrontal cortex (OFC). Serotonergic function has been strongly linked to visual reversal learning in humans and experimental animals but less is known about which receptor subtypes are involved. OBJECTIVES: The objectives of the study were to test the effects of systemic and intra-OFC 5-HT2C-receptor antagonism on visual reversal learning in rats and assess the psychological mechanisms underlying these effects within novel touchscreen paradigms. METHODS: In experiments 1-2, we used a novel 3-stimulus task to investigate the effects of 5-HT2C-receptor antagonism through SB 242084 (0.1, 0.5 and 1.0 mg/kg i.p.) cross-site. Experiment 3 assessed the effects of SB 242084 in 2-choice reversal learning. In experiment 4, we validated a novel touchscreen serial visual reversal task suitable for neuropharmacological microinfusions by baclofen-/muscimol-induced OFC inactivation. In experiment 5, we tested the effect of intra-OFC SB 242084 (1.0 or 3.0 μg/side) on performance in this task. RESULTS: In experiments 1-3, SB 242084 reduced early errors but increased late errors to criterion. In experiment 5, intra-OFC SB 242084 reduced early errors without increasing late errors in a reversal paradigm validated as OFC dependent (experiment 4). CONCLUSION: Intra-OFC 5-HT2C-receptor antagonism decreases perseveration in novel touchscreen reversal-learning paradigms for the rat. Systemic 5-HT2C-receptor antagonism additionally impairs late learning-a robust effect observed cross-site and potentially linked to impulsivity. These conclusions are discussed in terms of neural mechanisms underlying reversal learning and their relevance to psychiatric disorders.The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The study was also supported by a Wellcome Trust Grant (089589/z/09/z) to T.W.R., B.J. Everitt, B.J. Sahakian, A.C. Roberts and J.W. Dalley, and by a Wellcome Trust Senior Investigator Award to T.W.R. (104631/Z/14/Z). The Behavioural and Clinical Neuroscience Institute is co-funded by the Medical Research Council and the Wellcome Trust. J.A. was supported by the Swedish Pharmaceutical Society and the Swedish Research Council (350-2012-230). S.R.O.N was supported by BBSRC and Eli Lilly through CASE studentship (BB/F529054/1).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00213-015-3963-

    Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 micro-deletion syndrome – a study in male mice

    Get PDF
    Background: The hemizygous 22q11.2 micro-deletion is a common copy number variant in humans. The deletion confers high risk of neurodevelopmental disorders including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods: We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on the most comprehensive study undertaken in 22q11.2DS models. The study was conducted in male mice. Results: We found elevated post-pubertal NMDA receptor antagonist induced hyper-locomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR was resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal (DStr) elevations of the dopamine metabolite DOPAC and increased DStr expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. Limitations: The 22q11.2 micro-deletion has incomplete penetrance in humans and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors which may unmask latent psychopathology. Conclusion: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the aetiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.The research leading to these results was conducted as part of NEWMEDS and received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement n° 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). This work was further supported by grants from the Danish Advanced Technology Foundation (File no. 001-2009-2) and by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Introduction: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a \u201cHoly Grail\u201d of AD research and intensively sought; however, there are no well-established plasma markers. Methods: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. Results: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APO\u3b54 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). Discussion: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases

    Hippocampal Proteomic and Metabonomic Abnormalities in Neurotransmission, Oxidative Stress, and Apoptotic Pathways in a Chronic Phencyclidine Rat Model

    Full text link

    Étude sur une province basque Le Labourd : Maison Gastambidea / F. Gastambide, G. Gastambide

    No full text
    RĂşsticaPrecede tĂ­t.: Eskual-Herr

    Pe-TLIF (Percutaneous Transforaminal Interbody Fusion)

    No full text

    Amphetamine disrupts haemodynamic correlates of prediction errors in nucleus accumbens and orbitofrontal cortex

    No full text
    In an uncertain world, the ability to predict and update the relationships between environmental cues and outcomes is a fundamental element of adaptive behaviour. This type of learning is typically thought to depend on prediction error, the difference between expected and experienced events and in the reward domain that has been closely linked to mesolimbic dopamine. There is also increasing behavioural and neuroimaging evidence that disruption to this process may be a cross-diagnostic feature of several neuropsychiatric and neurological disorders in which dopamine is dysregulated. However, the precise relationship between haemodynamic measures, dopamine and reward-guided learning remains unclear. To help address this issue, we used a translational technique, oxygen amperometry, to record haemodynamic signals in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC), while freely moving rats performed a probabilistic Pavlovian learning task. Using a model-based analysis approach to account for individual variations in learning, we found that the oxygen signal in the NAc correlated with a reward prediction error, whereas in the OFC it correlated with an unsigned prediction error or salience signal. Furthermore, an acute dose of amphetamine, creating a hyperdopaminergic state, disrupted rats’ ability to discriminate between cues associated with either a high or a low probability of reward and concomitantly corrupted prediction error signalling. These results demonstrate parallel but distinct prediction error signals in NAc and OFC during learning, both of which are affected by psychostimulant administration. Furthermore, they establish the viability of tracking and manipulating haemodynamic signatures of reward-guided learning observed in human fMRI studies by using a proxy signal for BOLD in a freely behaving rodent

    The role of 5-HT<sub>2C</sub> receptors in touchscreen visual reversal learning in the rat:A cross-site study

    Get PDF
    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00213-015-3963-5Rationale\ud \ud Reversal learning requires associative learning and executive functioning to suppress non-adaptive responding. Reversal-learning deficits are observed in e.g. schizophrenia and obsessive-compulsive disorder and implicate neural circuitry including the orbitofrontal cortex (OFC). Serotonergic function has been strongly linked to visual reversal learning in humans and experimental animals but less is known about which receptor subtypes are involved.\ud \ud Objectives\ud \ud The objectives of the study were to test the effects of systemic and intra-OFC 5-HT_2C-receptor antagonism on visual reversal learning in rats and assess the psychological mechanisms underlying these effects within novel touchscreen paradigms.\ud \ud Methods\ud \ud In experiments 1?2, we used a novel 3-stimulus task to investigate the effects of 5-HT_2C-receptor antagonism through SB 242084 (0.1, 0.5 and 1.0 mg/kg i.p.) cross-site. Experiment 3 assessed the effects of SB 242084 in 2-choice reversal learning. In experiment 4, we validated a novel touchscreen serial visual reversal task suitable for neuropharmacological microinfusions by baclofen-/muscimol-induced OFC inactivation. In experiment 5, we tested the effect of intra-OFC SB 242084 (1.0 or 3.0 ?g/side) on performance in this task.\ud \ud Results\ud \ud In experiments 1?3, SB 242084 reduced early errors but increased late errors to criterion. In experiment 5, intra-OFC SB 242084 reduced early errors without increasing late errors in a reversal paradigm validated as OFC dependent (experiment 4).\ud \ud Conclusion\ud \ud Intra-OFC 5-HT_2C-receptor antagonism decreases perseveration in novel touchscreen reversal-learning paradigms for the rat. Systemic 5-HT_2C-receptor antagonism additionally impairs late learning?a robust effect observed cross-site and potentially linked to impulsivity. These conclusions are discussed in terms of neural mechanisms underlying reversal learning and their relevance to psychiatric disorders.The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union?s Seventh Framework Programme (FP7/2007-2013). The study was also supported by a Wellcome Trust Grant (089589/z/09/z) to T.W.R., B.J. Everitt, B.J. Sahakian, A.C. Roberts and J.W. Dalley, and by a Wellcome Trust Senior Investigator Award to T.W.R. (104631/Z/14/Z). The Behavioural and Clinical Neuroscience Institute is co-funded by the Medical Research Council and the Wellcome Trust. J.A. was supported by the Swedish Pharmaceutical Society and the Swedish Research Council (350-2012-230). S.R.O.N was supported by BBSRC and Eli Lilly through CASE studentship (BB/F529054/1)
    corecore