1,268 research outputs found

    WLM-1: A Non-Rotating, Gravitationally Unperturbed, Highly Elliptical Extragalactic Globular Cluster

    Full text link
    Globular clusters have long been known for presenting (at times) significant deviations from spherical symmetry. While rotation has been the main proposed explanation, other complicating factors such as their constant interaction with the strong gravitational potential of their host galaxy have made it difficult for a consensus to be reached. To address this question we have obtained high-resolution spectra of WLM-1, the lone globular cluster associated with the isolated, low-mass dwarf irregular galaxy WLM. Using archival HST WFPC2 data, we measure the radial ellipticity profile of WLM-1, finding it to be highly elliptical, with a mean value of 0.17 in the region 0.5-5" -- which is comparable to what is found in our Galaxy for the most elliptical globular clusters. There is no evidence of isophote twisting, except for the innermost regions of the cluster (r < 0.5"). To investigate whether the observed flattening can be ascribed to rotation, we have obtained long-slit high-resolution VLT/UVES spectra of this cluster along and perpendicular to the axis of flattening. Using cross-correlation we find that the velocity profile of the cluster is consistent with zero rotation along either axis. Thus neither cluster rotation nor galactic tides can be responsible for the flattened morphology of WLM-1. We argue that the required velocity dispersion anisotropy between the semi-major and semi-minor axes that would be required to account for the observed flattening is relatively small, of order 1 km/s. Even though our errors preclude us from conclusively establishing that such a difference indeed exists, velocity anisotropy remains at present the most plausible explanation for the shape of this cluster.Comment: 11 pages, 10 figures, submitted to the A

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja

    Military deployment, masculinity and trauma : reviewing the connections

    Full text link
    This article reviews the literature on deployment trauma and examines the limitations of conventional understandings of trauma as they relate to veterans’ experiences. It suggests that the failure to take into account social influences and social relationships limits the usefulness of conventional approaches to trauma. The article considers the role that masculinity plays in male veterans’ experience of and sense making about trauma. It is suggested that while formal recognition of posttraumatic stress disorder in the DSM has provided a helpful language for veterans, it is an incomplete response. A new model of masculinity that better enables the male veteran to speak about trauma and to reconnect with others has implications for counselling practice with veterans

    Whatever happened to repeat victimisation?

    Get PDF
    Crime is concentrated at the individual level (hot dots) as well as at area level (hot spots). Research on repeat victimisation affords rich prevention opportunities but has been increasingly marginalised by policy makers and implementers despite repeat victims accounting for increasing proportions of total crime. The present paper seeks to trigger a resurgence of interest in research and initiatives based on the prevention of repeat victimisation.N/

    Multimodal database of emotional speech, video and gestures

    Get PDF
    People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    Towards mathematical AI via a model of the content and process of mathematical question and answer dialogues

    Get PDF
    This paper outlines a strategy for building semantically meaningful representations and carrying out effective reasoning in technical knowledge domains such as mathematics. Our central assertion is that the semi-structured Q and A format, as used on the popular Stack Exchange network of websites, exposes domain knowledge in a form that is already reasonably close to the structured knowledge formats that computers can reason about. The knowledge in question is not only facts - but discursive, dialectical, argument for purposes of proof and pedagogy. We therefore assert that modelling the Q and A process computationally provides a route to domain understanding that is compatible with the day-to-day practices of mathematicians and students. This position is supported by a small case study that analyses one question from Mathoverflow in detail, using concepts from argumentation theory. A programme of future work, including a rigorous evaluation strategy, is then advanced

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA
    • 

    corecore