4,600 research outputs found

    Stochastic Analysis and Regeneration of Rough Surfaces

    Full text link
    We investigate Markov property of rough surfaces. Using stochastic analysis we characterize the complexity of the surface roughness by means of a Fokker-Planck or Langevin equation. The obtained Langevin equation enables us to regenerate surfaces with similar statistical properties compared with the observed morphology by atomic force microscopy.Comment: 4 pages, 7 figure

    The Dynamics of a Meandering River

    Full text link
    We present a statistical model of a meandering river on an alluvial plane which is motivated by the physical non-linear dynamics of the river channel migration and by describing heterogeneity of the terrain by noise. We study the dynamics analytically and numerically. The motion of the river channel is unstable and we show that by inclusion of the formation of ox-bow lakes, the system may be stabilised. We then calculate the steady state and show that it is in agreement with simulations and measurements of field data.Comment: Revtex, 12 pages, 2 postscript figure

    Level Crossing Analysis of Growing surfaces

    Full text link
    We investigate the average frequency of positive slope να+\nu_{\alpha}^{+} , crossing the height α=hhˉ\alpha = h- \bar h in the surface growing processes. The exact level crossing analysis of the random deposition model and the Kardar-Parisi-Zhang equation in the strong coupling limit before creation of singularities are given.Comment: 5 pages, two column, latex, three figure

    Multiple Myeloma: A Review of Imaging Features and Radiological Techniques

    Get PDF
    The recently updated Durie/Salmon PLUS staging system published in 2006 highlights the many advances that have been made in the imaging of multiple myeloma, a common malignancy of plasma cells. In this article, we shall focus primarily on the more sensitive and specific whole-body imaging techniques, including whole-body computed tomography, whole-body magnetic resonance imaging, and positron emission computed tomography. We shall also discuss new and emerging imaging techniques and future developments in the radiological assessment of multiple myeloma

    Wandering of a contact line at thermal equilibrium

    Full text link
    We reconsider the problem of the solid-liquid-vapour contact-line on a disordered substrate, in the collective pinning regime. We go beyond scaling arguments and perform an analytic computation, through the replica variational method, of the fluctuations of the line. We show how gravity effects must be included for a proper quantitative comparison with available experimental data of the wetting of liquid helium on a caesium substrate. The theoretical result is in good agreement with experimental findings for this case.Comment: 24 laTex pages with 5 EPS figures included. submitted to Phys. Rev

    Generic bounds on dipolar gravitational radiation from inspiralling compact binaries

    Full text link
    Various alternative theories of gravity predict dipolar gravitational radiation in addition to quadrupolar radiation. We show that gravitational wave (GW) observations of inspiralling compact binaries can put interesting constraints on the strengths of the dipole modes of GW polarizations. We put forward a physically motivated gravitational waveform for dipole modes, in the Fourier domain, in terms of two parameters: one which captures the relative amplitude of the dipole mode with respect to the quadrupole mode (α\alpha) and the other a dipole term in the phase (β\beta). We then use this two parameter representation to discuss typical bounds on their values using GW measurements. We obtain the expected bounds on the amplitude parameter α\alpha and the phase parameter β\beta for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise power spectral densities using Fisher information matrix. AdvLIGO and ET may at best bound α\alpha to an accuracy of 102\sim10^{-2} and 103\sim10^{-3} and β\beta to an accuracy of 105\sim10^{-5} and 106\sim10^{-6} respectively.Comment: Matches with the published versio

    A Remember-Know Analysis of the Semantic Serial Position Function

    Get PDF
    Did the serial position functions observed in certain semantic memory tasks (e.g., remembering the order of books or films) arise because they really tapped episodic memory? To address this issue, participants were asked to make "remember-know" judgments as they reconstructed the release order of the 7 Harry Potter books and 2 sets of movies. For both classes of stimuli, the "remember" and "know" serial position functions were indistinguishable, and all showed the characteristic U-shape with marked primacy and recency effects. These results are inconsistent with a multiple memory systems view, which predicts recency effects only for "remember" responses and no recency effects for "know" responses. However, the data were consistent with a general memory principle account: the relative distinctiveness principle. According to this view, performance on both episodic and semantic memory tasks arises from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered
    corecore