725 research outputs found

    Thermal Equilibrium as an Initial State for Quantum Computation by NMR

    Full text link
    We present a method of using a nuclear magnetic resonance computer to solve the Deutsch-Jozsa problem in which: (1) the number of molecules in the NMR sample is irrelevant to the number of qubits available to an NMR quantum computer, and (2) the initial state is chosen to be the state of thermal equilibrium, thereby avoiding the preparation of pseudopure states and the resulting exponential loss of signal as the number of qubits increases. The algorithm is described along with its experimental implementation using four active qubits. As expected, measured spectra demonstrate a clear distinction between constant and balanced functions.Comment: including 4 figure

    Adrenal lesions found incidentally: how to improve clinical and cost-effectiveness

    Get PDF
    Introduction Adrenal incidentalomas are lesions that are incidentally identified while scanning for other conditions. While most are benign and hormonally non-functional, around 20% are malignant and/or hormonally active, requiring prompt intervention. Malignant lesions can be aggressive and life-threatening, while hormonally active tumours cause various endocrine disorders, with significant morbidity and mortality. Despite this, management of patients with adrenal incidentalomas is variable, with no robust evidence base. This project aimed to establish more effective and timely management of these patients. Methods We developed a web-based, electronic Adrenal Incidentaloma Management System (eAIMS), which incorporated the evidence-based and National Health Service–aligned 2016 European guidelines. The system captures key clinical, biochemical and radiological information necessary for adrenal incidentaloma patient management and generates a pre-populated outcome letter, saving clinical and administrative time while ensuring timely management plans with enhanced safety. Furthermore, we developed a prioritisation strategy, with members of the multidisciplinary team, which prioritised high-risk individuals for detailed discussion and management. Patient focus groups informed process-mapping and multidisciplinary team process re-design and patient information leaflet development. The project was partnered by University Hospital of South Manchester to maximise generalisability. Results Implementation of eAIMS, along with improvements in the prioritisation strategy, resulted in a 49% reduction in staff hands-on time, as well as a 78% reduction in the time from adrenal incidentaloma identification to multidisciplinary team decision. A health economic analysis identified a 28% reduction in costs. Conclusions The system’s in-built data validation and the automatic generation of the multidisciplinary team outcome letter improved patient safety through a reduction in transcription errors. We are currently developing the next stage of the programme to proactively identify all new adrenal incidentaloma cases

    Rapid solution of problems by nuclear-magnetic-resonance quantum computation

    Get PDF
    We offer an improved method for using a nuclear-magnetic-resonance quantum computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the application of the NMRQC are exponential diminishment of density-matrix elements with the number of bits, threatening weak signal levels, and the high cost of preparing a suitable starting state. A third obstacle is a heretofore unnoticed restriction on measurement operators available for use by an NMRQC. Variations on the function classes of the Deutsch-Jozsa problem are introduced, both to extend the range of problems advantageous for quantum computation and to escape all three obstacles to use of an NMRQC. By adapting it to one such function class, the Deutsch-Jozsa problem is made solvable without exponential loss of signal. The method involves an extra work bit and a polynomially more involved Oracle; it uses the thermal-equilibrium density matrix systematically for an arbitrary number of spins, thereby avoiding both the preparation of a pseudopure state and temporal averaging.Comment: 19 page

    CD1a expression by Barrett's metaplasia of gastric type may help to predict its evolution towards cancer

    Get PDF
    As emerging in the recent literature, CD1a has been regarded as a molecule whose expression may reflect tumour evolution. The aim of the present work was to investigate the expression of CD1a in a series of Barrett's metaplasia (BM), gastric type (GTBM), with and without follow-up, in order to analyse whether its expression may help to diagnose this disease and to address the outcome. Indeed, GTBM may be confused sometimes with islets of ectopic gastric mucosa and its evolution towards dysplasia (Dy) or carcinoma (Ca) could not be foreseen. We showed a significant higher expression of CD1a in GTBM than in both Dy and Ca; nevertheless, the number of positive GTBM was significantly lower in the group of cases that at follow-up underwent Dy or Ca. Our data address that CD1a may be a novel biomarker for BM and that its expression may help to predict the prognosis of this pathology

    Novel Exopolysaccharide from Marine Bacillus subtilis with Broad Potential Biological Activities: Insights into Antioxidant, Anti-Inflammatory, Cytotoxicity, and Anti-Alzheimer Activity

    Get PDF
    In the presented study, Bacillus subtilis strain AG4 isolated from marine was identified based on morphological, physiological, phylogenetic characteristics and an examination of 16S rRNA sequences. Novel exopolysaccharide (EPSR4) was extracted and isolated from the Bacillus subtilis strain as a major fraction of exopolysaccharide (EPS). The analysis of structural characterization indicated that EPSR4 is a ÎČ-glycosidic sulphated heteropolysaccharide (48.2%) with a molecular weight (Mw) of 1.48 × 104 g/mole and has no uronic acid. Analysis of monosaccharide content revealed that EPSR4 consists of glucose, rhamnose and arabinose monosaccharide in a molar ratio of 5:1:3, respectively. Morphological analysis revealed that EPSR4 possess a high crystallinity degree with a significant degree of porosity, and its aggregation and conformation in the lipid phase might have a significant impact on the bioactivity of EPSR4. The biological activity of EPSR4 was screened and evaluated by investigating its antioxidant, cytotoxicity, anti-inflammatory, and anti-Alzheimer activities. The antioxidant activity results showed that EPSR4 has 97.6% scavenging activity toward DPPH free radicals at 1500 ”g/mL, with an IC50 value of 300 ”g/mL, and 64.8% at 1500 ”g/mL toward hydrogen peroxide free radicals (IC50 = 1500 ”g/mL, 30 min). Furthermore, EPSR4 exhibited considerable inhibitory activity towards the proliferation of T-24 (bladder carcinoma), A-549 (lung cancer) and HepG-2 (hepatocellular carcinoma) cancer cell lines with IC50 of 244 ”g/mL, 148 ”g/mL and 123 ”g/mL, respectively. An evaluation of anti-inflammatory activity revealed that EPSR4 has potent lipoxygenase (LOX) inhibitory activity (IC50 of 54.3 ”g/mL) and a considerable effect on membrane stabilization (IC50 = 112.2 ± 1.2 ”g/mL), while it showed cyclooxygenase (COX2) inhibitory activity up to 125 ”g/mL. Finally, EPSR4 showed considerable inhibitory activity towards acetylcholine esterase activity. Taken together, this study reveals that Bacillus subtilis strain AG4 could be considered as a potential natural source of novel EPS with potent biological activities that would be useful for the healthcare system.Faculty of Science, Suez Canal UniversityPrincess Nourah bint Abdulrahman UniversityTaif UniversityPeer Reviewe

    Reduced NAA-Levels in the NAWM of Patients with MS Is a Feature of Progression. A Study with Quantitative Magnetic Resonance Spectroscopy at 3 Tesla

    Get PDF
    Reduced N-acetyl-aspartate (NAA) levels in magnetic resonance spectroscopy (MRS) may visualize axonal damage even in the normal appearing white matter (NAWM). Demyelination and axonal degeneration are a hallmark in multiple sclerosis (MS).To define the extent of axonal degeneration in the NAWM in the remote from focal lesions in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS).H-MR-chemical shift imaging (TR = 1500ms, TE = 135ms, nominal resolution 1ccm) operating at 3Tesla to assess the metabolic pattern in the fronto–parietal NAWM. Ratios of NAA to creatine (Cr) and choline (Cho) and absolute concentrations of the metabolites in the NAWM were measured in each voxel matching exclusively white matter on the anatomical T2 weighted MR images.No significant difference of absolute concentrations for NAA, Cr and Cho or metabolite ratios were found between RRMS and controls. In SPMS, the NAA/Cr ratio and absolute concentrations for NAA and Cr were significantly reduced compared to RRMS and to controls.In our study SPMS patients, but not RRMS patients were characterized by low NAA levels. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression
    • 

    corecore