11,010 research outputs found
Three and Four Region Multi-sector Linear Modelling Using UK Data : Some Preliminary Results
Scotland and Wales have relatively up-to-date, independently generated, IO tables. These can be separated out from a UK national IO table to construct an inter-regional table. We therefore undertake the detailed analysis at this three-region (Scotland, Wales and the Rest of the UK (RUK)) level, where the Rest of the UK is England and Northern Ireland. However, we also construct a more rudimentary four-region (Scotland, Wales, England and Ireland) set of IO and SAM accounts by constructing a separate Northern Ireland accounts. The inter-regional IO and SAM models are produced for the year 1999. This was determined by the availability of consistent data. In Section II we describe the construction of a three-region Input-Output model for the United Kingdom, which includes the regions of Scotland, Wales and the Rest of the UK (RUK). In Section III we extend the three-region model to construct an inter-regional Social Accounting Matrix. Section IV reports some results using the three-region IO and SAM models. In Section V, we generate a four-region IO and SAM model for the UK, which disaggregates Northern Ireland from the Rest of the UK, and provide some results using the four-region IO and SAM models. Section VI offers our conclusions
Electro-optic techniques for longitudinal electron bunch diagnostics
Electro-optic techniques are becoming increasingly important in ultrafast electron bunch longitudinal diagnostics and have been successfully implemented at various accelerator laboratories. The longitudinal bunch shape is directly obtained from a single-shot, non-intrusive measurement of the temporal electric field profile of the bunch. Further- more, the same electro-optic techniques can be used to measure the temporal profile of terahertz / far-infrared opti- cal pulses generated by a CTR screen, at a bending magnet (CSR), or by an FEL. This contribution summarizes the re- sults obtained at FELIX and FLASH
Benchmarking of electro-optic monitors for femtosecond electron bunches
The longitudinal profiles of ultrashort relativistic electron bunches at the soft x-ray free-electron laser FLASH have been investigated using two single-shot detection schemes: an electro-optic (EO) detector measuring the Coulomb field of the bunch and a radio-frequency structure transforming the charge distribution into a transverse streak. A comparison permits an absolute calibration of the EO technique. EO signals as short as 60 fs (rms) have been observed, which is a new record in the EO detection of single electron bunches and close to the limit given by the EO material properties
Single shot longitudinal bunch profile measurements by temporally resolved electro-optical detection
For the high gain operation of a SASE FEL, extremely short electron bunches are essential to generate sufficiently high peak currents. At the superconducting linac of FLASH at DESY, we have installed an electro- optic measurement system to probe the time structure of the electric field of single ~100 fs electron bunches. In this technique, the field induced birefringence in an electro-optic crystal is encoded on a chirped picosecond laser pulse. The longitudinal electric field profile of the electron bunch is then obtained from the encoded optical pulse by a single shot cross correlation with a 35 fs laser pulse using a second harmonic crystal (temporal decoding). An electro-optical signal exhibiting a feature with 118 fs FWHM was observed, and this is close to the limit of resolution due to the material properties of the particular electro-optic crystal used. The measured electro-optic signals are compared to bunch shapes simultaneously measured with a transverse deflecting cavity
Longtitudinal electron beam diagnostics via upconversion of THz to visible radiation
Longitudinal electro-optic electron bunch diagnostics has been successfully applied at several accelerators. The electro-optic effect can be seen as an upconversion of the Coulomb field of the relativistic electron bunch (THz radiation) to the visible spectral range, where a variety of standard diagnostic tools are available. Standard techniques to characterise femtosecond optical laser pulses (auto- and cross-correlators) have led to the schemes that can measure electron bunch profiles with femtosecond resolution. These techniques require, however, well synchronized femtosecond laser pulses, in order to obtain the desired temporal resolution. Currently, we are exploring other electro-optic variants which require less advanced laser systems and will be more amenable to beam based longitudinal feedback applications. The first results of one such new scheme will be presented in this paper
Single-shot longitudinal bunch profile measurements at FLASH using electro-optic detection:experiment, simulation, and validation
At the superconducting linac of FLASH at DESY, we have installed an electro-optic (EO) experiment for single- shot, non-destructive measurements of the longitudinal electric charge distribution of individual electron bunches. The time profile of the electric bunch field is electro- optically encoded onto a chirped titanium-sapphire laser pulse. In the decoding step, the profile is retrieved either from a cross-correlation of the encoded pulse with a 30 fs laser pulse, obtained from the same laser (electro- optic temporal decoding, EOTD), or from the spectral intensity of the transmitted probe pulse (electro-optic spectral decoding, EOSD). At FLASH, the longitudinally compressed electron bunches have been measured during FEL operation with a resolution of better than 50 fs. The electro-optic process in gallium phosphide was numerically simulated using as input data the bunch shapes determined with a transverse-deflecting RF structure. In this contribution, we present electro-optically measured bunch profiles and compare them with the simulation
- …