1,531 research outputs found

    Ion induced grain rotation - a general phenomenon?

    Get PDF

    Ionization efficiency of material sputtered under swift heavy ion bombardment

    Get PDF

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    Roles of Mitochondrial Dynamics under Stressful and Normal Conditions in Yeast Cells

    Get PDF
    Eukaryotic cells contain dynamic mitochondrial filaments: they fuse and divide. Here we summarize data on the protein machinery driving mitochondrial dynamics in yeast and also discuss the factors that affect the fusion-fission balance. Fission is a general stress response of cells, and in the case of yeast this response appears to be prosurvival. At the same time, even under normal conditions yeast mitochondria undergo continuous cycles of fusion and fission. This seems to be a futile cycle and also expensive from the energy point of view. Why does it exist? Benefits might be the same as in the case of sexual reproduction. Indeed, mixing and separating of mitochondrial content allows mitochondrial DNA to segregate and recombine randomly, leading to high variation in the numbers of mutations per individual mitochondrion. This opens a possibility for effective purifying selection-elimination of mitochondria highly contaminated by deleterious mutations. The beneficial action presumes a mechanism for removal of defective mitochondria. We argue that selective mitochondrial autophagy or asymmetrical distribution of mitochondria during cell division could be at the core of such mechanism
    • …
    corecore