7,982 research outputs found

    Quantization of Point-Like Particles and Consistent Relativistic Quantum Mechanics

    Get PDF
    We revise the problem of the quantization of relativistic particle models (spinless and spinning), presenting a modified consistent canonical scheme. One of the main point of the modification is related to a principally new realization of the Hilbert space. It allows one not only to include arbitrary backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of the corresponding quantum field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced, and all state vectors have only positive norms.Comment: 57 pages, LaTex fil

    The MRO-accompanied modes of Re-implantation into SiO2-host matrix: XPS and DFT based scenarios

    Full text link
    The following scenarios of Re-embedding into SiO2-host by pulsed Re-implantation were derived and discussed after XPS-and-DFT electronic structure qualification: (i) low Re-impurity concentration mode -> the formation of combined substitutional and interstitial impurities with Re2O7-like atomic and electronic structures in the vicinity of oxygen vacancies; (ii) high Re-impurity concentration mode -> the fabrication of interstitial Re-metal clusters with the accompanied formation of ReO2-like atomic structures and (iii) an intermediate transient mode with Re-impurity concentration increase, when the precursors of interstitial defect clusters are appeared and growing in the host-matrix structure occur. An amplification regime of Re-metal contribution majority to the final Valence Band structure was found as one of the sequences of intermediate transient mode. It was shown that most of the qualified and discussed modes were accompanied by the MRO (middle range ordering) distortions in the initial oxygen subnetwork of the a-SiO2 host-matrix because of the appeared mixed defect configurations.Comment: 19 pages, 7 figures, accepted to J. Alloys and Compound

    Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO2_2

    Full text link
    Cobalt and manganese ions are implanted into SiO2_2 over a wide range of concentrations. For low concentrations, the Co atoms occupy interstitial locations, coordinated with oxygen, while metallic Co clusters form at higher implantation concentrations. For all concentrations studied here, Mn ions remain in interstitial locations and do not cluster. Using resonant x-ray emission spectroscopy and Anderson impurity model calculations, we determine the strength of the covalent interaction between the interstitial ions and the SiO2_2 valence band, finding it comparable to Mn and Co monoxides. Further, we find an increasing reduction in the SiO2_2 electronic band gap for increasing implantation concentration, due primarily to the introduction of Mn- and Co-derived conduction band states. We also observe a strong increase in a band of x-ray stimulated luminescence at 2.75 eV after implantation, attributed to oxygen deficient centers formed during implantation.Comment: 8 pages, 6 figure

    Quantization of (2+1)-spinning particles and bifermionic constraint problem

    Full text link
    This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to a classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of 3+1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present article we apply a similar approach to the problem of quantizing the massive 2+1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3+1 dimensions. The point is that in 2+1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2+1 dimensions is also interesting from the physical viewpoint (e.g. anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2+1 quantum theory of a spinor field.Comment: LaTex, 24 pages, no figure

    Quantization of the Relativistic Particle

    Get PDF
    We revise the problem of the quantization of relativistic particle, presenting a modified consistent canonical scheme, which allows one not only to include arbitrary backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of the corresponding quantum field. At the same time this construction presents a possible solution of the well-known old problem how to construct a consistent quantum mechanics on the base of a relativistic wave equation.Comment: 10 page

    Identification of earthquake precursors in the hydrogeochemical and geoacoustic data for the Kamchatka peninsula by flicker-noise spectroscopy

    Get PDF
    A phenomenological systems approach for identifying potential precursors in multiple signals of different types for the same local seismically active region is proposed based on the assumption that a large earthquake may be preceded by a system reconfiguration (preparation) at different time and space scales. A nonstationarity factor introduced within the framework of flicker-noise spectroscopy, a statistical physics approach to the analysis of time series, is used as the dimensionless criterion for detecting qualitative (precursory) changes within relatively short time intervals in arbitrary signals. Nonstationarity factors for chlorine-ion concentration variations in the underground water of two boreholes on the Kamchatka peninsula and geacoustic emissions in a deep borehole within the same seismic zone are studied together in the time frame around a large earthquake on October 8, 2001. It is shown that nonstationarity factor spikes (potential precursors) take place in the interval from 70 to 50 days before the earthquake for the hydrogeochemical data and at 29 and 6 days in advance for the geoacoustic data.Comment: 8 pages, 4 figures; to be published in Nat. Hazards Earth Syst. Sc

    The quasi-bi-Hamiltonian formulation of the Lagrange top

    Full text link
    Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the possible reductions of the Poisson tensors, the vector field and its Hamiltonian functions on a four-dimensional space. We show that the vector field of the Lagrange top possesses, on the reduced phase space, a quasi-bi-Hamiltonian formulation, which provides a set of separation variables for the corresponding Hamilton-Jacobi equation.Comment: 12 pages, no figures, LaTeX, to appear in J. Phys. A: Math. Gen. (March 2002

    Quantum Phase Transition in Pr2CuO4 to Collinear Spin State in Inclined Magnetic Field: A Neutron Diffraction Observation

    Full text link
    In the external field slightly inclined to the xx- or y-axis of the frustrated tetragonal atiferromagnet Pr2CuO4, a transition is discovered from the phase with orthogonal antiferromagnetic spin subsystems along [1,0,0] and [0,1,0] to the phase with the collinear spins. This phase is shown to be due to the pseudodipolar interaction, and transforms into the spin-flop phase S perp H asymptotically at very high field. The discovered phase transition holds at T=0 and is a quantum one, with the transition field being the critical point and the angle between two subsystems being the order parameter
    corecore