Starting from the tri-Hamiltonian formulation of the Lagrange top in a
six-dimensional phase space, we discuss the possible reductions of the Poisson
tensors, the vector field and its Hamiltonian functions on a four-dimensional
space. We show that the vector field of the Lagrange top possesses, on the
reduced phase space, a quasi-bi-Hamiltonian formulation, which provides a set
of separation variables for the corresponding Hamilton-Jacobi equation.Comment: 12 pages, no figures, LaTeX, to appear in J. Phys. A: Math. Gen.
(March 2002