83,432 research outputs found
An integrated theory of language production and comprehension
Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal
Transonic airfoil analysis and design in nonuniform flow
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness
Calculation of vortex lift effect for cambered wings by the suction analogy
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented
VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy
A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given
Acyclic orientations on the Sierpinski gasket
We study the number of acyclic orientations on the generalized
two-dimensional Sierpinski gasket at stage with equal to
two and three, and determine the asymptotic behaviors. We also derive upper
bounds for the asymptotic growth constants for and -dimensional
Sierpinski gasket .Comment: 20 pages, 8 figures and 6 table
Network attack detection at flow level
In this paper, we propose a new method for detecting unauthorized network
intrusions, based on a traffic flow model and Cisco NetFlow protocol
application. The method developed allows us not only to detect the most common
types of network attack (DDoS and port scanning), but also to make a list of
trespassers' IP-addresses. Therefore, this method can be applied in intrusion
detection systems, and in those systems which lock these IP-addresses
A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases
Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have
been performed for a wide range of temperatures and pressures at a wavelength
of 403 nm and at a 90 degrees scattering angle. Measurements of the
Rayleigh-Brillouin spectral scattering profile were conducted at high
signal-to-noise ratio for all three species, yielding high-quality spectra
unambiguously showing the small differences between scattering in air, and its
constituents N2 and O2. Comparison of the experimental spectra with
calculations using the Tenti S6 model, developed in 1970s based on linearized
kinetic equations for molecular gases, demonstrates that this model is valid to
high accuracy. After previous measurements performed at 366 nm, the Tenti S6
model is here verified for a second wavelength of 403 nm. Values for the bulk
viscosity for the gases are derived by optimizing the model to the
measurements. It is verified that the bulk viscosity parameters obtained from
previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for
air, which is treated as a single-component gas with effective gas transport
coefficients, the Tenti S6 treatment is validated for 403 nm as for the
previously used wavelength of 366 nm, yielding an accurate model description of
the scattering profiles for a range of temperatures and pressures, including
those of relevance for atmospheric studies. It is concluded that the Tenti S6
model, further verified in the present study, is applicable to LIDAR
applications for exploring the wind velocity and the temperature profile
distributions of the Earth's atmosphere. Based on the present findings,
predictions can be made on the spectral profiles for a typical LIDAR
backscatter geometry, which deviate by some 7 percent from purely Gaussian
profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in
the Earth's atmosphere
The NLO QCD Corrections to Meson Production in Decays
The decay width of to meson is evaluated at the next-to-leading
order(NLO) accuracy in strong interaction. Numerical calculation shows that the
NLO correction to this process is remarkable. The quantum
chromodynamics(QCD)renormalization scale dependence of the results is obviously
depressed, and hence the uncertainties lying in the leading order calculation
are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende
- …