94 research outputs found

    Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T

    Full text link
    We have measured the magnetic field dependence of the ordered antiferromagnetic moment and the magnetic excitations in the heavy-fermion superconductor URu2Si2 for fields up to 17 Tesla applied along the tetragonal c axis, using neutron scattering. The decrease of the magnetic intensity of the tiny moment with increasing field does not follow a simple power law, but shows a clear inflection point, indicating that the moment disappears first at the metamagnetic transition at ~40 T. This suggests that the moment m is connected to a hidden order parameter Phi which belongs to the same irreducible representation breaking time-reversal symmetry. The magnetic excitation gap at the antiferromagnetic zone center Q=(1,0,0) increases continuously with increasing field, while that at Q=(1.4,0,0) is nearly constant. This field dependence is opposite to that of the gap extracted from specific-heat data.Comment: 10 pages, 5 figures, submitted to PR

    Pressure dependence of the magnetization of URu2Si2

    Full text link
    The ground state of URu2Si2 changes from so-called hidden order (HO) to large-moment antiferromagnetism (LMAF) upon applying hydrostatic pressure in excess of 14 kbar. We report the dc-magnetization M(B,T,p) of URu2Si2 for magnetic fields B up to 12 T, temperatures T in the range 2 to 100 K, and pressure p up to 17 kbar. Remarkably, characteristic scales such as the coherence temperature T*, the transition temperature T0, and the anisotropy in the magnetization depend only weakly on the applied pressure. However, the discontinuity in dM/dT at T0, which measures the magnetocaloric effect, decreases nearly 50 % upon applying 17 kbar for M and B parallel to the tetragonal c-axis, while it increases 15-fold for the a-axis. Our findings suggest that the HO and LMAF phases have an astonishing degree of similarity in their physical properties, but a key difference is the magnetocaloric effect near T0 in the basal plane

    Strain enhancement of superconductivity in CePd2Si2 under pressure

    Full text link
    We report resistivity and calorimetric measurements on two single crystals of CePd2Si2 pressurized up to 7.4 GPa. A weak uniaxial stress induced in the pressure cell demonstrates the sensitivity of the physics to anisotropy. Stress applied along the c-axis extends the whole phase diagram to higher pressures and enhances the superconducting phase emerging around the magnetic instability, with a 40% increase of the maximum superconducting temperature, Tc, and a doubled pressure range. Calorimetric measurements demonstrate the bulk nature of the superconductivity.Comment: 4 pages, 4 figure

    Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy

    Full text link
    We infer that soft-x-ray absorption spectroscopy is a versatile method for the determination of the crystal-field ground state symmetry of rare earth Heavy Fermion systems, complementing neutron scattering. Using realistic and universal parameters, we provide a theoretical mapping between the polarization dependence of Ce M4,5M_{4,5} spectra and the charge distribution of the Ce 4f4f states. The experimental resolution can be orders of magnitude larger than the 4f4f crystal field splitting itself. To demonstrate the experimental feasibility of the method, we investigated CePd2_2Si2_2, thereby settling an existing disagreement about its crystal-field ground state

    Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3

    Full text link
    The magnetic ordering temperature of some rare earth based heavy fermion compounds is strongly pressure-dependent and can be completely suppressed at a critical pressure, pc_c, making way for novel correlated electron states close to this quantum critical point. We have studied the clean heavy fermion antiferromagnets CePd2_2Si2_2 and CeIn3_3 in a series of resistivity measurements at high pressures up to 3.2 GPa and down to temperatures in the mK region. In both materials, superconductivity appears in a small window of a few tenths of a GPa on either side of pc_c. We present detailed measurements of the superconducting and magnetic temperature-pressure phase diagram, which indicate that superconductivity in these materials is enhanced, rather than suppressed, by the closeness to magnetic order.Comment: 11 pages, including 9 figure

    Disorder and relaxation mode in the lattice dynamics of PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric

    Full text link
    The low-energy part of vibration spectrum in PbMg1/3_{1/3}Nb2/3_{2/3}O3_3 relaxor ferroelectric was studied by inelastic neutron scattering. We observed the coexistence of a resolution-limited central peak with strong quasielastic scattering. The line-width of the quasielastic component follows a Γ0+Dq2\Gamma_0+Dq^2 dependence. We find that Γ0\Gamma_0 is temperature-dependent. The relaxation time follows the Arrhenius law well. The presence of a relaxation mode associated with quasi-elastic scattering in PMN indicates that order-disorder behaviour plays an important r\^ole in the dynamics of diffuse phase transitions

    Theoretical study of the dynamic structure factor of superfluid 4He

    Full text link
    We study the dynamic structure factor S(q⃗,ω)S(\vec{q},\omega) of superfluid 4He at zero temperature in the roton momentum region and beyond using field-theoretical Green's function techniques. We start from the Gavoret-Nozi\`{e}res two-particle propagator and introduce the concept of quasiparticles. We treat the residual (weak) interaction between quasiparticles as being local in coordinate space and weakly energy dependent. Our quasiparticle model explicitly incorporates the Bose-Einstein condensate. A complete formula for the dynamic susceptibility, which is related to S(q⃗,ω)S (\vec{q},\omega), is derived. The structure factor is numerically calculated in a self-consistent way in the special case of a momentum independent interaction between quasiparticles. Results are compared with experiment and other theoretical approaches.Comment: 17 pages, 16 figure

    Neutron Scattering Study on Competition between Hidden Order and Antiferromagnetism in U(Ru_{1-x}Rh_x)_2Si_2 (x <= 0.05)

    Full text link
    We have performed elastic and inelastic neutron scattering experiments on the solid solutions U(Ru_{1-x}Rh_x)_2Si_2 for the Ru rich concentrations: x=0, 0.01, 0.02, 0.025, 0.03, 0.04 and 0.05. Hidden order is suppressed with increasing x, and correspondingly the onset temperature T_m (~ 17.5 K at x=0) of weak antiferromagnetic (AF) Bragg reflection decreases. For x=0.04 and 0.05, no magnetic order is detected in the investigated temperature range down to 1.4 K. In the middle range, 0.02 <= x <= 0.03, we found that the AF Bragg reflection is strongly enhanced. At x=0.02, this takes place at ~ 7.7 K (=T_M), which is significantly lower than T_m (~ 13.7 K). T_M increases with increasing x, and seems to merge with T_m at x=0.03. If the AF state is assumed to be homogeneous, the staggered moment \mu_o estimated at 1.4 K increases from 0.02(2) \mu_B/U (x=0) to 0.24(1) \mu_B/U (x=0.02). The behavior is similar to that observed under hydrostatic pressure (\mu_o increases to ~ 0.25 \mu_B/U at 1.0 GPa), suggesting that the AF evolution induced by Rh doping is due to an increase in the AF volume fraction. We also found that the magnetic excitation observed at Q=(1,0,0) below T_m disappears as T is lowered below T_M.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
    • …
    corecore