159 research outputs found

    Follicular nodules (Thy3) of the thyroid: is total thyroidectomy the best option?

    Get PDF
    BACKGROUND: Identification of the best management strategy for nodules with Thy3 cytology presents particular problems for clinicians. This study investigates the ability of clinical, cytological and sonographic data to predict malignancy in indeterminate nodules with the scope of determining the need for total thyroidectomy in these patients. METHODS: The study population consisted of 249 cases presenting indeterminate nodules (Thy3): 198 females (79.5%) and 51 males (20.5%) with a mean age of 52.43 ± 13.68 years. All patients underwent total thyroidectomy. RESULTS: Malignancy was diagnosed in 87/249 patients (34.9%); thyroiditis co-existed in 119/249 cases (47.79%) and was associated with cancer in 40 cases (40/87; 45.98%). Of the sonographic characteristics, only echogenicity and the presence of irregular margins were identified as being statistically significant predictors of malignancy. 52/162 benign lesions (32.1%) and 54/87 malignant were hypoechoic (62.07%); irregular margins were present in 13/162 benign lesions (8.02%), and in 60/87 malignant lesions (68.97%). None of the clinical or cytological features, on the other hand, including age, gender, nodule size, the presence of microcalcifications or type 3 vascularization, were significantly associated with malignancy. CONCLUSIONS: The rate of malignancy in cytologically indeterminate lesions was high in the present study sample compared to other reported rates, and in a significant number of cases Hashimoto’s thyroiditis was also detected. Thus, considering the fact that clinical and cytological features were found to be inaccurate predictors of malignancy, it is our opinion that surgery should always be recommended. Moreover, total thyroidectomy is advisable, being the most suitable procedure in cases of multiple lesions, hyperplastic nodular goiter, or thyroiditis; the high incidence of malignancy and the unreliability of intraoperative frozen section examination also support this preference for total over hemi-thyroidectomy

    Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in CPCP-Asymmetric Background

    Full text link
    We calculate the splitting between fermion and anti-fermion effective masses in high temperature gauge theories in the presence of a non-vanishing chemical potential due to the CPCP-asymmetric fermionic background. In particular we consider the case of left-handed leptons in the SU(2)⊗U(1)SU(2)\otimes U(1) theory when the temperature is above 250250 GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001

    Surgical management of gynecomastia: Experience of a general surgery center

    Get PDF
    Aim. Gynecomastia is a common finding in male population of all ages. The aim of our study was to present our experience and goals in surgical treatment of gynecomastia. Patients and Methods. Clinical records of patients affected by gynecomastia referred to our Department of Surgery between September 2008 and January 2015 were analyzed. 50 patients were included in this study. Results. Gynecomastia was monolateral in 12 patients (24%) and bilateral in 38 (76%); idiopathic in 41 patients (82%) and secondary in 9 (18%). 39 patients (78%) underwent surgical operation under general anaesthesia, 11 (22%) under local anaesthesia. 3 patients (6%) presented recurrent disease. Webster technique was performed in 28 patients (56%), Davidson technique in 16 patients (32%); in 2 patients (4%) Pitanguy technique was performed and in 4 patients (8%) a mixed surgical technique was performed. Mean surgical time was 80.72±35.14 minutes, median postoperative stay was 1.46±0.88 days. 2 patients (4%) operated using Davidson technique developed a hematoma, 1 patient (2%) operated with the same technique developed hypertrophic scar. Conclusions. Several surgical techniques are described for surgical correction of gynecomastia. If performed by skilled general surgeons surgical treatment of gynecomastia is safe and permits to reach satisfactory aesthetic results

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model

    Full text link
    Using the exact propagators in a constant magnetic field, the effective electromagnetic Lagrangian at finite temperature and density is calculated to all orders in the field strength B within the framework of the complete electroweak model, in the weak coupling limit. The partition function and free energy are obtained explicitly and the finite temperature effective coupling is derived in closed form. Some implications of this result, potentially interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex

    Fermionic dispersion relations at finite temperature and non-vanishing chemical potentials in the minimal standard model

    Get PDF
    We calculate the fermionic dispersion relations in the minimal standard model at finite temperature in presence of non-vanishing chemical potentials due to the CP-asymmetric fermionic background. The dispersion relations are calculated for a vacuum expectation value of the Higgs field equal to zero (unbroken electroweak symmetry). The calculation is performed in the real time formalism of the thermal field theory at one-loop order in a general ξ\xi gauge. The fermionic self-energy is calculated at leading order in temperature and chemical potential and this fact permits us to obtain gauge invariant analytical expressions for the dispersion relations.Comment: LaTeX File, 18 pages, 1 Postscript figur

    The electromagnetic vertex of neutrinos in an electron background and a magnetic field

    Full text link
    We study the electromagnetic vertex function of a neutrino that propagates in an electron background in the presence of a static magnetic field. The structure of the vertex function under the stated conditions is determined and it is written down in terms of a minimal and complete set of tensors. The one-loop expressions for all the form factors is given, up to terms that are linear in the magnetic field, and the approximate integral formulas that hold in the long wavelength limit are obtained. We discuss the physical interpretation of some of the form factors and their relation with the concept of the neutrino induced charge. The neutrino acquires a longitudinal and a transverse charge, due to the fact that the form factors depend on the transverse and longitudinal components of the photon momentum independently. We compute those form factors explicitly in various limiting cases and find that the longitudinal and transverse charge are the same for the case of a non-relativistic electron gas, but not otherwise.Comment: 18 pages. Revtex4, axodra

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MW≫B≫me,T,μ,∣p∣M_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong B≫T2B\gg T^{2} and weakly-strong B≳T2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
    • …
    corecore