23 research outputs found

    Vorticity production and survival in viscous and magnetized cosmologies

    Full text link
    We study the role of viscosity and the effects of a magnetic field on a rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal magnetohydrodynamic approximation. Our results confirm that viscosity can generate vorticity in inhomogeneous environments, while the magnetic tension can produce vorticity even in the absence of fluid pressure and density gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we find that viscosity adds to the diluting effect of the universal expansion. Typically, however, the dissipative viscous effects are confined to relatively small scales. We also identify the characteristic length bellow which the viscous dissipation is strong and beyond which viscosity is essentially negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic presence is found to slow down the standard decay-rate of linear vortices, thus leading to universes with more residual rotation than generally anticipated.Comment: Minor changes. References added and updated. Published versio

    Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A

    Get PDF
    We report the appearance of a new radio source at a projected offset of 460 pc from the nucleus of Cygnus A. The flux density of the source (which we designate Cygnus A-2) rose from an upper limit of <0.5 mJy in 1989 to 4 mJy in 2016 (ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincident with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary SMBH at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 107 years

    Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai-Lidov Effect

    Get PDF
    Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH-BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH-BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH-BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai-Lidov mechanism in unequalmass, soft BH-BH binaries. Our model is based on a set of Monte Carlo simulations for BH-BH binaries in galactic nuclei, taking into account quadrupole-and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH-BH binaries, our model predicts a total merger rate of similar to 1-3 Gpc(-3) yr(-1), depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH-BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH

    Black hole mergers in galactic nuclei induced by the eccentric Kozai–Lidov effect

    No full text
    Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ~1–3  Gpc\,\mathrm{Gpc} −3 yr\mathrm{yr} −1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH

    On DRC-covering of K_n by cycles

    No full text
    Theme 1 - Reseaux et systemes - Projet MASCOTTESIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : 14802 E, issue : a.2001 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore