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Abstract We analyze the dynamical instability of a non-
static reflection axial stellar structure by taking into account
the generalized Euler equation in metric f (R) gravity. Such
an equation is obtained by contracting the Bianchi identities
of the usual anisotropic and effective stress-energy tensors,
which after using a radial perturbation technique gives a mod-
ified collapse equation. In the realm of the R + εRn gravity
model, we investigate instability constraints at Newtonian
and post-Newtonian approximations. We find that the insta-
bility of a meridional axial self-gravitating system depends
upon the static profile of the structure coefficients, while
f (R) extra curvature terms induce the stability of the evolv-
ing celestial body.

1 Introduction

General relativity (GR) is a remarkable effort in mathemat-
ical physics to analyze gravitational effects of stellar rela-
tivistic interiors. Several interesting consequences coming
from cosmic microwave background, observational ingredi-
ents of supernovae Ia and its cross-juxtaposition with fore-
ground stellar galactic distributions [1–3] have made a rev-
olution, thereby introducing a new research window. In this
realm, many astrophysicists found GR modifications helpful
to explore unknown aspects of cosmic gravitational dynam-
ics. f (R) gravity [4,5] is among the extended gravity theo-
ries obtained by replacing the Ricci invariant with a generic
function f (R) of it in the Einstein–Hilbert action.

Anisotropic effects are leading paradigms in address-
ing the evolutionary mechanisms of celestial imploding
models. Herrera and Santos [6] reviewed contributions of
locally anisotropic fluid arrangements on the dynamical
phases of collapsing shear and shear-free compact objects. Di
Prisco et al. [7] investigated the dynamical properties of an
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anisotropic spherical matter distribution and found that small
fluctuations of the pressure anisotropy lead to system crack-
ing. Sharif et al. [8–15] analyzed the effects of anisotropy on
the dynamical properties of spherical as well as non-spherical
dense relativistic distributions and found very complicated
system phases due to the presence of anisotropy. Sunzu et al.
[16] studied analytical models of spherical anisotropic inte-
riors and found that anisotropic effects provide a broader
platform to discuss various forms of stellar relativistic sys-
tems. Recently, we [17–19] explored the dynamical features
of anisotropic relativistic interiors.

The spinning stellar distributions indicate the direct rel-
evance of the anisotropy for the gravitational evolution
in which gravitational radiation cause vorticity within the
observer congruences. Vorticity represents rotation of a
neighboring fluid about an observer moving with relativis-
tic matter distributions relative to an inertial frame. Herrera
et al. [20] argued that such vorticity originates from the exis-
tence of a super-energy flow, which may have direct rele-
vance in terms of the super-Poynting vector. Bonnor [21]
found the electromagnetic energy flow in a relativistic com-
pact distribution by formulating a relationship between the
super-Poynting vector and vorticity. Korunur et al. [22] cal-
culated various kinematical variables, like angular momen-
tum, energy, and momentum of matter configurations associ-
ated with an axially symmetric scalar field. Li [23] explored
the superradiant instability of rotating compact relativistic
objects in higher dimensional theory and found configura-
tions unstable against scalar field perturbations. Recently,
Herrera et al. [24] presented a formal analysis of gravita-
tional radiation within an anisotropic non-static reflection
axial symmetric source and the existence of a super-energy
flow linked with the matter vorticity.

A stability analysis of self-gravitating stellar systems in
GR as well as modified gravity has attracted many researchers
for the last few years. The study of different collapsing celes-
tial models with extra degrees of freedom has great signif-
icance in the exploration of late-time cosmological evolu-
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tion. Chandrasekhar [25] discussed instability constraints for
spherical symmetric relativistic geometry coupled with ideal
matter configurations using the ratio of specific heats known
as the stiffness parameter, �1. Herrera et al. [26] investi-
gated stability regions for radiating collapsing stellar objects
and concluded that the dissipation vector tends to move the
systems toward stable configurations. Chan et al. [27–29]
studied the remarkable effects of the shearing viscosity and
anisotropy on the instability constraints in the Newtonian (N)
and post-Newtonian (pN) eras.

Cai [30] discussed the dynamical properties and the struc-
ture formation of dense matter relativistic configurations in
modified gravity by assigning zero, negative, and positive
values to the constant curvature. Bamba et al. [31] performed
a dynamical analysis of a collapsing relativistic stellar system
and claimed that invoking of Rα (1 < α ≤ 2) corrections
could help to construct a viable and singularity free model.
Myung et al. [32] performed a stability analysis of the spher-
icalstellar structure with constant Ricci invariant background
in metric f (R) gravity via a perturbation scheme and noticed
the relatively stable distributions under specific constraints.
Moon et al. [33] extended these consequences to a negative
cosmological constant environment and calculated the limits
for the stability of relativistic systems.

Capozziello et al. [34] explored the dynamical evolution
of relativistic collapsing spherical interior in f (R) gravity by
evaluating an extended form of the Poisson and Boltzmann
equations. De Laurentis and Capozziello [35] discussed the
instability issue of a stellar interior at the N approximation
with f (R) extra degrees of freedom and also studied axisym-
metric black hole models. Astashenok et al. [36] investi-
gated the evolution of self-gravitating systems and found
relatively more massive and supergiant dense configurations
due to f (R) gravity corrections. Farinelli et al. [37] dis-
cussed the dynamical properties of stellar systems in the
presence of f (R) corrections and found that higher degree
terms tend to mollify the collapsing process. Sharif et al.
[38,39] studied the instability constraints for a restricted class
of an axially symmetric spacetime by means of the adiabatic
index/stiffness parameter.

The present paper aims to extend our previous work [39]
of stability analysis by taking reflection effects in non-static
axial symmetric anisotropic source with εRn extra degrees of
freedom. In the present paper, we develop instability regions
for an anisotropic meridional axisymmetric source with a
R + εRn background. The inclusion of an εRn correction
in our analysis comes from the fact that this corresponds
to the various eras of the cosmic history, thereby helping to
explain the gravitational dynamics during inflationary as well
as late-time accelerating regimes. Furthermore, the addition
of meridional effects in stellar system causes a flow of grav-
itational energy due to existence of vorticity tensor in the
analysis.

The paper has the following format. Section 2 deals with
kinematical formulations of a comoving meridional axial
symmetric geometry coupled with anisotropic matter con-
figurations. The meridional effects in stellar system causes
a flow of gravitational energy due to existence of a vorticity
tensor. We present f (R) dark source components and a set
of dynamical equations with reflection axial degrees of free-
dom. In Sect. 3, we discuss a viable f (R) model and use a
perturbation method to develop the collapse equation. Sec-
tion 4 explores instability constraints. Finally, we summarize
our results in the last section.

2 Anisotropic source and field equations

The extended configuration of the Einstein–Hilbert action is

S f (R) = 1

2κ

∫
d4x

√−g f (R) + SM , (1)

where κ, f (R), SM , Tαβ are coupling constant, matter
action, a non-linear Ricci curvature function, and the usual
stress-energy tensor, respectively. The variation of the above
action with respect to gαβ provides the field equations

fR Rαβ − ∇α∇β fR − gαβ

(
1

2
f − � fR

)
= κTαβ, (2)

where �, ∇α, fR are the D’Alembert, the covariant deriva-
tive and d f

dR operators, respectively. Equation (2) can be writ-
ten in terms of the Einstein tensor as

Gαβ = κ

fR
(

(D)

Tαβ + Tαβ), (3)

where

(D)

Tαβ = 1

κ

{
R

2

(
f

R
− fR

)
gαβ − � fRgαβ + ∇α∇β fR

}
(4)

is the stress-energy tensor indicating the f (R) contribution
in the dynamics of relativistic systems. We take axially sym-
metric metric characterizing reflection effects [24],

ds2 = −A2(t, r, θ)dt2 + 2L(t, r, θ)dtdθ

+ B2(t, r, θ)(dr2 + r2dθ2) + C2(t, r, θ)dφ2, (5)

with a locally anisotropic fluid configuration,

Tαβ = (μ + P)VαVβ + Pgαβ

+ 1

3
(	I I + 2	I )

(
KαKβ − 1

3
hαβ

)

+ 1

3
(	I + 2	I I )

(
NαNβ − 1

3
hαβ

)

+ 	K N (KαNβ + KβNα), (6)
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where μ, P, 	I , 	I I , 	K L , and hαβ are the fluid energy
density, the pressure, anisotropic scalars, and the projection
tensor, respectively. The matter four velocity, Vα , and space-
like vectors Sα, Kα , and Nα in comoving coordinates are

V α = 1

A
δ0
α, Vα = −Aδ0

α + L

A
δ2
α, Sα = Cδ3

α, Kα = Bδ1
α,

Nα =
√

�

A
δ2
α, (7)

where � = (ABr)2 + L2, which obey the following con-
straints:

K αNα = K αSα = SαNα = VαK
α = V αNα = V αSα = 0,

KαK
α = NαN

α = SαS
α = −V αVα = 1.

The fluid pressure and its anisotropic scalars can be expressed
alternatively in terms of the projection tensor and spacelike
vectors, respectively, as

P = 1

3
hαβTαβ, 	I = (2K αK β − SαSβ − NαNβ)Tαβ,

	K N =K αNβTαβ,	I I =(2NαNβ −K αK β −SαSβ)Tαβ.

The non-zero components of the effective stress-energy
tensor (4) are

(D)

T αβ =

⎡
⎢⎢⎣
V1 + W1 X1 + Y1 X3 + Y3 0
X1 + Y1 V2 + W2 X2 + Y2 0
X3 + Y3 X2 + Y2 V3 + W3 0

0 0 0 V4 + W4

⎤
⎥⎥⎦ ,

(8)

where the dark source f (R) terms Vi , Wi , and X j , Y j

are diagonal and non-diagonal components of the effec-
tive energy–momentum tensor (4), respectively, in which Wi

and Y j incorporate axial reflection effects with f (R) extra
degrees of freedom. By choosing X j and Y j equal to zero
along with � → A2B2r2, higher curvature terms of the
restricted axisymmetric metric can be found. However, the
inclusion of these terms along with the anisotropy in the usual
stress-energy tensor ensure the propagation of gravitational
radiation in the environment [40].

The kinematical quantity controlling the local spinning
motion of anisotropic matter distributions is the vorticity ten-
sor, which for a meridional axially symmetric metric can be
expressed in terms of Kα and Nα as

�αβ = �(KβNα − NβKα),

where

� = L

2B
√

�

(
L ′

L
− 2A′

A

)
(9)

is known as the vorticity scalar. Here the prime stands for ∂
∂r .

There exists only one independent non-zero vorticity com-
ponent along the rθ direction. The existence of the vorticity
scalar is directly related to the existence of reflection effects
of the axisymmetric spacetime, as it is controlled by the non-
diagonal structure coefficient, L . Thus, if one takes � = 0
over the dynamical evolution of the axial anisotropic space-
time, this imparts a null value to the non-diagonal scale factor,
whose dynamics has already been discussed [39].

In order to evaluate the dynamical evolution equations for
an axially symmetric relativistic celestial body with f (R)

background, we consider

|T αβ +
(D)

T αβ |;β = 0,

which yields

μ̇ − μ

[
Ḃ

B
+ Ċ

C
+ 1

�

(
r2AȦB2 + L L̇ + r2A2B Ḃ

)]

+ AB2(μ + P)

�

[
r2

(
2Ḃ

B
+ Ċ

C

)

+ L2

A2B2

(
Ḃ

B
− Ȧ

A
+ L̇

L
+ Ċ

C

)]

+ 	I

3A

(
Ḃ

B
− Ċ

C

)
+ 	I I

3�

{
AB2r2

(
Ḃ

B
− Ċ

C

)

+ L2

A

(
L̇

L
− Ȧ

A
− Ċ

C

)}

+
(
B2r2AȦ

�
+ Ċ

C

)
V1 + D0(t, r, θ) = 0, (10)

P ′ + 2

9

(
2	′

I + 	′
I I

) +
[
P + 2

9
(2	I + 	I I )

]

×
[
C ′

C
+ 3LL ′

2�
+ r2A2B2

�

(
A′

A

+2B ′

B
+ 2

r
− (r B)′

r B

)]
− r2AB5

�3/2

×
[
	K N ,θ −

{
Aθ

A
+ 6Bθ

B
+ Cθ

C
+ 4r2A2B2

�

×
(
Aθ

A
+ Bθ

B

)
+ 4LLθ

�

}
	K L

]
+ μr4A4B4

�2

×
(
B Ḃ + A′

A
− L Aθ

r2AB2

)
−

(
(r B)′

r B

+ L

2L ′

)
μr2A2L2B2

�2 +
(

3Ḃ

B
+ r2B2AȦ

�
+ Ċ

C

)

× X1 + D1(t, r, θ) = 0, (11)
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μr2A2B2L

�2

[
μ̇

μ
+ Ȧ

A
+ 3Ḃ

B
+ L̇

L
+ Ċ

C
+ 1

r2B2

×
(

μθ

μ
+ 2Lθ

L
+ 2Aθ

A

)
+ 1

�

{
4r2A2

×
(
Ȧ

A
+ Ḃ

B

)
− 4L̇

L
− L A2

(
5Aθ

A
+ 2Bθ

B

)

+r2A2B2
(
L̇

L
+ Ḃ

B

)
+ r2A3B2Aθ

L

}
− 4L2Lθ�

r2B2

]

+ μA2L2

�2

{
Bθ

B
+ Cθ

C
− r2BL Ḃ

�

}
− r3AB3	K N

�
3
2

×
[
	′

K N

	K N
+ 3

r
+4B ′

B
+ A′

A
+ C ′

C
+ 3

�

×
{
LL ′

2
+ r2A2B2

(
3

r
+ 2A′

A
+ 3B ′

B

)}
+ 7LL ′

2�

]

+ 1

�

{
P + 2

9
(	I + 2	I I )

}

×
[
r2A2B2

�

{
(2A2 + A)

(
Aθ

A
+ Bθ

B

)
− L Ḃ

B

+2ABθ

B

}
+ 2AAθ + A2Cθ

C
− r2BL L̇

�

−2A2LLθ

�
− L Ḃ

B

]
− P

C�
(LĊ

+ A2Cθ ) + A2

�

{
Pθ + 2

9
(	I,θ + 2	I I,θ )

}

+ D2(t, r, θ) = 0, (12)

where D0, D1, and D2 are f (R) corrections given in
Appendix A. Here the overdot and subscript θ stand for ∂

∂t
and ∂

∂θ
, respectively. The second of the above equations is

known as the generalized Euler equation.

3 f (R) model and perturbation scheme

Many inflationary models in the early universe are estab-
lished on scalar fields coming in supergravity and super-
string theories. The first model of inflation was suggested
by Starobinsky, which deals with a conformal anomaly in
quantum gravity [41] given by [42]

f (R) = R + εRn, (13)

where n can be positive or negative integer. This model
explains the present universe’s acceleration due to the pres-
ence of dark energy and can serve as power-law inflation, i.e.
an exponential expansion and ordinary inflation incorporat-
ing a minimally coupled scalar field. Here ε ∼ 1

M2n−2 > 0
for n > 0, and M has mass dimensions. Since f (R) grav-
ity can be used as an alternative for dark matter [43–46] in
addition to dark energy at cluster as well as stellar scales,

this model with n = 2 was claimed both as a dark matter
model with ε = 1

6M2 [47–49] and as a dark energy model.

The value of M is chosen to be 2.7 × 10−12 GeV along with
ε ≤ 2.3 × 1022 Ge/V2 for dark matter cosmology [50]. All
GR solutions can be found by taking the limit f (R) → R.

Here, we use perturbation method [26–29] to explore a
modified collapse equation for a meridional axially symmet-
ric anisotropic geometry. For very small values of the per-
turbation parameter α with 0 < α � 1, we take effects up
to O(α). We first suppose that the system is in hydrostatic
equilibrium at t = 0, however, on departing from this state,
the system depends upon the same time dependence factor
T (t) on all its structure coefficients. The structure and matter
variables can be perturbed as follows:

S(t, r, θ) = S0(r, θ) + αT (t)s(r, θ), (14)

M(t, r, θ) = M0(r, θ) + αm̄(t, r, θ), (15)

where S represents a perturbation method applicable to the
structural coefficients of Eq. (5), i.e., A, B, C, L , and to
the Ricci scalar, R, which after perturbation denotes s as
a, b, c, l, and e, respectively. Equation (15) indicates the
perturbation method of the matter variables [these matter
variables are taken from Eq. (6)]. Thus the allocation of M
will be μ, P, 	a, a = 1, 2, 3, and the corresponding per-
turbed quantities will be represented by placing a bar over
that. However, the perturbation technique for the f (R) model
is given as follows:

f (t, r) = [
R0(r) + εRn

0 )
] + αT (t)e(r)[1 − εnRn−1

0 ], (16)

fR(t, r) = 1 + εnRn−1
0 + αT (t)e(r)nε(n − 1)Rn−2

0 , (17)

where R0 represents the static distribution of the Ricci scalar.
Using Eqs. (14)–(17), the first of the dynamical equations is
satisfied trivially, while the rest of the dynamical equations
(11) and (12) at t = 0 give

P ′
0 + 2

9

(
2	′

I0 + 	′
I I0

) +
[
P0 + 2

9
(2	I0 + 	I I0)

]

×
[
C ′

0

C0
+ 3L0L ′

0

2�0
+ r2A2

0B
2
0

�0
×

(
A′

0

A0
+ 1

r

)]

− r3A0B5
0

�
3
2
0

	K N0,θ − r3A0B5
0

�
3
2
0

{
A0θ

A
+ 6B0θ

B0
+ C0θ

C0

+4L0L0θ

�0
+ 4r2A2

0B
2
0

�0

(
A0θ

A0
+ B0θ

B0

)}

+ μr4A4
0B

4
0

�2
0

(
A′

0

A0
− L0A0θ

r2A0B2
0

)
− μ0r2A2

0L
2
0B

2
0

�2
0

×
(

L0

2L ′
0

+ 1

r
+ B ′

0

B0

)
+ D1S = 0, (18)
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μ0r2A2
0B

2
0 L0

�2

[
+ 1

r2B2
0

(
μ0θ

μ0
+ 2L0θ

L0
+ 2A0θ

A0

)

− 1

�0

{
L0A

2
0

(
5A0θ

A0
+ 2B0θ

B0

)
− r2A3

0B
2
0 A0θ

L0

}

−4L2
0L0θ�0

r2B2
0

]
+ μA2

0L
2
0

�2
0

{
B0θ

B0
+ Cθ0

C

}

− r3A0B3
0	K N0

�
3/2
0

[
3

r
+ 	′

K N0

	K N0
+ 4B ′

0

B0

+ A′
0

A0
+ C ′

0

C0
+ 3

�0

×
{
L0L ′

0

2
+ r2A2

0B
2
0

(
3

r
+ 2A′

0

A0
+ 3B ′

0

B0

)}

+7L0L ′
0

2r�0

]
+ 1

�0

{
P0 + 2

9
(	I0 + 2	I I0)

}

×
[
r2A2

0B
2
0

�0

{
(2A2

0 + A0)

(
A0θ

A0
+ B0θ

B0

)

+2A0B0θ

B0

}
+ 2A0A0θ + A2

0C0θ

C0
− 2A2

0L0L0θ

�0

]

+ A2
0C0θ + A2

0

�0

{
P0θ + 2

9
(	I0θ + 2	I I0θ )

}

+ D2S = 0. (19)

The static f (R) contribution of the second and third con-
servation equations are denoted by D1S and D2S, respec-
tively, and they can be calculated very easily from Eqs. (A.2)
and (A.3) after using the perturbation method. Using Eqs.
(14)–(17), the non-static perturbed axial dynamical equation
(10) will take the form

˙̄μ +
[
μ0

{
b

B0
+ c

C0
+ 1

�0

(
r2aA2

0B
2
0+l L0+r2bB0L0

)}

+(μ0 + P0)
A2

0B
2
0

�2
0

×
{
r2

(
2b

B0
+ 2c

C0

)
+ L2

0

A2
0B

2
0

(
b

B0
+ l

L0
− a

A0
+ c

C0

)}

+ 	I0

3

(
b

B0
− c

C0

)

+	I I0

3�0

{
r2A2

0B
2
0

(
b

B0
− c

C0

)
+L2

0

(
l

L0
− a

A0
− c

C0

)}

+ D3(r, θ)

]
Ṫ = 0,

where D3 represents f (R) corrections which can be obtained
from the expressions g(t, r, θ) and h(t, r, θ) given in
Appendix A. Substituting Eq. (13) in Eq. (8) and then
employing the perturbation method, one can obtain the f (R)

dynamical quantities, Vi , Wi , X j , Y j whose values upon
substitution in Eqs. (A.4) and (A.5) yield D3 such that
g(t, r, θ) + h(t, r, θ) = D3Ṫ . Integration of the above equa-
tion gives

μ̄ = −χ(r, θ)T, (20)

where

χ =
[
μ0

{
b

B0
+ c

C0
+ 1

�0

(
r2aA2

0B
2
0 + l L0 + r2bB0L0

)}

+ (μ0 + P0)
A2

0B
2
0

�2
0

{
r2

(
2b

B0
+ 2c

C0

)

+ L2
0

A2
0B

2
0

(
b

B0
+ l

L0
− a

A0
+ c

C0

)}

+ 	I0

3

(
b

B0
− c

C0

)
+ 	I I0

3�0

{
r2A2

0B
2
0

(
b

B0
− c

C0

)

+L2
0

(
l

L0
− a

A0
− c

C0

)}
+ D3(r, θ)

]
.

Now, we evaluate the tθ component of the metric f (R)

field equations (3) and then using the perturbation scheme
along with some manipulations, it follows that

�1T̈ + �2Ṫ + �3T = 0, (21)

where the quantities �i contain combinations of the merid-
ional axial geometric functions as well as R + εRn correc-
tions, depending upon the r and θ coordinates, and they are
assumed to be positive. More specifically, these quantities
incorporate non-perturbed as well as perturbed terms. There
exist oscillating as well as non-oscillating solutions of the
above equation, which represent unstable as well as stable
models of evolving relativistic stellar systems, respectively.
We confine ourselves to obtaining solutions for a collapsing
relativistic system. Thus we limit our perturbation parame-
ters, a, b, c, e, and l to be positive definite quantities for
which we obtain ω2 > 0. In this context, the solution of Eq.
(21) is given by

T (t) = − exp(ωt), where ω2 =
−�2 +

√
�2

2 − 4�1�3

2�1
.

(22)

Using the perturbation technique, the non-static distributions
of Eq. (11), after using Eq. (22), are written as

1

B2
0

{
P̄ ′ + 2

9
(2	̄′

I + 	̄′
I I )

}
+ 1

B2
0

{
P̄ + 2

9
(2	̄I + 	̄I I )

}

×
{
C ′

0

C0
+ 3L0L ′

0

2�0
+

(
1

r
+ A′

0

A0

)
r2A2

0B
2
0

�0

}
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− r3A0B3
0

�
3/2
0

	̄K N ,θ − 	̄K N
r3A0B3

0

�
3/2
0

{
A0θ

A0
+ 6B0θ

B0

+4L0L0θ

�0
+ C0θ

C0
+ 4r2A0B2

0

�0

(
A0θ

A0
+ B0θ

B0

)}

+ μ̄r4A4
0

�2
0

(
A′

0

A0
− L0A0θ

r2A0B2
0

)
− μ̄L2

0r
2 A2

0

�2
0

×
(

L ′
0

2L0
+ B ′

0

B0

)
− 2b

B3
0

{
P0

′ + 2

9
(2	′

I0 + 	′
I I0)

}

× T + r3A0B3
0

�
3/2
0

	K N0,θ

(
a

A0
+ 3b

B0
− 3d

�0

)
T

+ l L0X10

�0
+ r2A2

0bB0

�0
X30 + [ϒ + � + ζ ]T = 0, (23)

where ϒ, ζ , and � are mentioned in Appendix A. The quan-
tity controlling the reflection degrees of freedom along with
the f (R) corrections of an axisymmetric celestial body is
ϒ . However, the expression � incorporates a gravitational
contribution due to f (R) gravity, while ζ is the remaining
part of the non-static perturbed generalized Euler equation
holding the usual Einstein gravity effects.

In view of the second law of thermodynamics, we can link
perturbed anisotropic quantities with the energy density by
an equation of state as [51]

P̄i = �1
Pi0

μ0 + Pi0
μ̄, (24)

where �1 is a fluid stiffness parameter, also known as the adi-
abatic index. This measures pressure variations of the matter
configurations with respect to energy density. In our analysis,
�1 will be treated as a constant identity. Using Eqs. (20) and
(24), we have

	̄K N = −�1
	K N0

μ0 + 	K N0
χT, P̄ = −�1

P0

μ0 + P0
χT,

	̄I = −�1
	I0

μ0 + 	I0
χT, 	̄I I = −�1

	I I0

μ0 + 	I I0
χT .

Using Eq. (20) as well as the above relations in Eq. (23), we
obtain

− 1

B2
0

�1φ
′T − 1

B2
0

�1φT

×
{
C ′

0

C0
+ 3L0L ′

0

2�0
+

(
1

r
+ A′

0

A0

)
r2A2

0B
2
0

�0

}

− r3A0B3
0

�
3/2
0

�1T

(
	K N0χ

μ0 + 	K N0

)
θ

− 	K N0χ

μ0 + 	K N0

r3A0B3
0

�
3/2
0

×
{
A0θ

A0
+ 4r2A0B2

0

�0

(
A0θ

A0
+ B0θ

B0

)

+C0θ

C0
+ 6B0θ

B0
+ 4L0L0θ

�0

}

− T
χr4A4

0

�2
0

(
A′

0

A0
− L0A0θ

r2A0B2
0

)
+ TχL2

0r
2 A2

0

�2
0

(
L ′

0

2L0

+ B ′
0

B0

)
− 2b

B3
0

{
P0

′ + 2

9
(2	′

I0 + 	′
I I0)

}

× T + r3A0B3
0

�
3/2
0

(
a

A0
+ 3b

B0
− 3d

�0

)

× 	K N0,θT + l L0X10

�0
+ r2A2

0bB0

�0
X30

+ [ϒ + � + ζ ]T = 0, (25)

where φ = P0χ
(μ0+P0)

+ 4	I0χ
9(μ0+	I0)

+ 2	I I0χ
9(μ0+	I I0)

. The above
equation is known as the collapse equation of axisymmetric
stellar objects characterizing the meridional and f (R) extra-
order degrees of freedom.

4 Instability regions

Now we proceed to calculate constraints at which meridional
axial symmetric stellar systems undergo an instability win-
dow at both the N and the pN eras with an f (R) background.
We also examine the role of the stiffness parameter �1 in this
scenario. We reduce our results to previously found limiting
cases. The formulation of the instability constraints should be
compatible with the Tolman–Oppenheimer–Volkoff (TOV)
equation. Such a type of equation constrains the relativis-
tic stellar structure coupled with the matter distribution at
the phase of static gravitational equilibrium. In this respect,
Barausse et al. [52] investigated hydrostatic equilibrium
phases of relativistic models by obtaining a modified version
of the TOV equation in f (R) gravity. Recently, Astashenok
et al. [53] calculated an extended version of the TOV equa-
tion with an equation of state in the realm of cubic as well as
quadratic corrections and found that such an equation can be
used to describe viable models of compact objects. Here, we
formulate the TOV equation that will help us to obtain some
limits on the fluid energy density and its derivatives to avoid
a curvature divergence at the stellar boundary. The 11 and 22
components of the metric f (R) field equations, respectively,
provide us with

A′

A
= B2

γ

[
κ

fR

(
P + 	I

3
+ ξ2

κB2

)
− ξ1

�2B2

]
, (26)

Aθ

A
= 1

γ1

[
κ

fR

{
μL2

A2 + �

A2

(
P + 2

9
(	I I + 2	I )

)

+ξ4

κ

}
− ξ3

4A2

]
, (27)
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where

γ = A2B2r2

�

[
16

�

(
1 + rC ′

C
+ r B ′

B

)
+ r f ′

R

fR

]
, (28)

γ1 = A2B2r2L2

�2

(
r2B2Ċ

LC
− 2Bθ

B
2

2Cθ

C

)

− r2B2A2 fRθ

κ fR

(
r2A2B2

�
− L2

�

)

− B4A4r4

�2

(
Cθ

C
+ Bθ

B

)
, (29)

ξ1 = �2G11 − 4�r2A2b2 A
′

A

(
4

r
+ 4C ′

C
+ 4B ′

B

)
,

ξ2 = (D)

T11 + A2B2r2 f ′
R A

′

κA�
,

ξ3 = 4�2G22 + 4B4A4r4
(
AθCθ

AC
+ Aθ Bθ

AB

)

− 4A2B2r2L2
(
r2B2Ċ Aθ

LC A
− 2Aθ Bθ

AB
− 2AθCθ

AC

)
,

ξ4 = (D)

T22 − A2B2r2 fRθ

�

(
r2B2AAθ

�
− L2Aθ

A�

)
.

The corresponding Misner–Sharp mass function [54] takes
the form

mtot = r3B

2

(
r2B2 Ḃ2

�
− B ′

r B2 −2B ′

r B
− A2B2

θ

�
−2LBθ Ḃ

�

)
.

(30)

Using Eq. (30), and the second and the third laws of the
conservation of the usual energy–momentum tensor as well
as Eqs. (26) and (27), we obtain the TOV equations,

− P ′ =
[
9μr4A4ψ4

m − 9r2A2ψ2
m�{9P + 2(	I I + 2	I )}
9�2

]

× ψ2
m

γ

[
κ

fR

(
P + 	I

3
+ ξ2

κψ2
m

)
− ξ1

�2ψ2
m

]

+
[
ξ5 + 2

9
(2	I I + 	I )

]
,

− Pθ =
[−5μr2A4ψ2

mL − r2A2ψ2
m{9P+2(	I I+2	I )}

9�2

]

× �

γ1A2

[
κ

fR

{
μL2

A2 + �

A2

(
P + 2

9
(	I I + 2	I )

)
+ ξ4

κ

}

+ ξ1

4A2

]
+ ξ7�

A2 .

where

ξ5 = T 0β

;β −
(
P + 2

9
(2	I I + 	I )

)
r2A2B2A′

�A

+ A′μr4A4B4

�2A
−

(
P + 2

9
(	I I + 2	I )

)′
,

ξ6 = ξ2 + A2r2B2 f ′
R

�

(
B ′

B
+ 1

r

)
− C ′ f ′

R

C
− L�L ′ f ′

R

2
,

ξ7 = T 1β

;β − A2

�
Pθ + Aθ

A

×
[

5r2A4B2Lμ

�2 − r2A2B2

�2

(
P + 2

9
(	I I + 2	I )

)]
,

ψm =
(2mtot−r2B ′)+D

√
(r2B ′−2mtot )2+4r4 Ḃ2(r A2B ′−A2B2

θ −LBθ Ḃ)

2Ḃ2r3
,

where ψm is calculated by making the assumption that reflec-
tion effects are far smaller than those produced by other scale
factors in the evolution of an axisymmetric system. In order to
examine the contributions of f ′

R and fRθ across the merid-
ional non-static axial relativistic object, we multiply both
sides of the above equations with d f

dP . After some manipula-
tions, this yields a couple of quadratic equations in f ′

R and
fRθ , whose solutions become

f ′
R = 1

18 fRCr3A2ψ2
m�

×
[
−ψmr

2A2(144( fRψmC + fRψmrC
′ + Crψ ′

m)

+2C1�rCψm + 9C2rCψm�) + D
√

�1

]
, (31)

fRθ = 1

72A4B3CL�(A2b2r2 − L2)

×
[
−36A4 fR B

2r2L2κ(r2B3Ċ − 2CLbθ

−2LBCθ ) + 36A6B4Lr4 fRκ(BCθ − CBθ )

−36A2r2B2LC�2(r2B2A2 −L2) + D
√

�2

]
,

(32)

where�1 and�2 are the discriminants of the f ′
R and fRθ qua-

dratic equations, C =
[

9μr4A4ψ4
m−9r2A2ψ2

m�{9P+2(	I I+2	I )}
9�2

]
d fR
dP , C1 = 2(	I I +2	I )

′ d fR
dP , while D = ±1. We shall take

A0 = 1 − ϕ, B0 = 1 + ϕ with ϕ = m0
r for the pN epochs;

therefore,

A′
0

A0
= (1 + ϕ)′(1 − ϕ),

A0θ

A0
= (1 + ϕ)θ (1 − ϕ).

Over the surface of an axial reflection relativistic star object,
Eqs. (31) and (32) yield

f ′
R

fR
= W1(D − 1)

18Cψm�
,

fRθ

fR
= W2(D − 1)

2
, (33)
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where W1 = 144(ψmC + ψmrC ′ + rCψ ′
m) and W2 =

A2r2Lκ
(A2B2r2−L2)

(r2Ċψm + 2LCψmθ − 2LCθψm) − A4B2r4κ

(BCθ − CBθ ) + r2C�2(r2A2B2 − L2). It can found from
Eq. (33) that on setting D = −1, one can get specific forms
of γ and γ1 from Eqs. (28) and (29), which will make A′

A

and Aθ

A approach ∞ with (r, θ) → (r−, θ−), while a finite

value of A′
A and Aθ

A can be achieved for (r, θ) → (r+, θ+).
For a physically viable stellar model, we take D = 1, which
yields fRθ = 0 = f ′

R for (r, θ) → (r−, θ−). This rein-
forces the continuity of fRθ , f ′

R as well as A′ over the sur-
face of the axial stellar structure with reflection degrees of
freedom.

4.1 Newtonian approximation

In order to evaluate the instability conditions at the N regime,
we take A0 = B0 = 1 and we assume the anisotropic pres-
sure to be less than zero, which is the criterion for a collapsing
celestial body. We also take configurations of initial perturbed
structural coefficients to be C0 = L0 = r . Consequently, the
collapse equation (25) turns out to be

�1φ
′
N + 9

4r
φN�1 − �1

	K N0,θ

2r
√

2

(
2c

r
+ 3b + l

r

)
θ

= 3

8r

(
2c

r
+ 3b + l

r

)
− 2b

[
P ′

0

+2

9
(2	′

I0 + 	′
I I0)

]
+ 1

2r
√

2

(
2b − l

r

)

+ b

2
X30N + l

2r
X10N + ϒ + � + ζ,

where the subscript N indicates the evaluation of the term
at the N regime. We assume that all terms on both sides
of the above equation are positive. The instability con-
straint for meridional axisymmetric fluid configurations is
given by

�1 <

3
8r

( 2c
r + 3b + l

r

) − 2b
[
P ′

0 + 2
9 (2	′

I0 + 	′
I I0)

] + φ1 + ζN

φ′
N + 9

4r φN − 	K N0,θ

2r
√

2

( 2c
r + 3b + l

r

)
θ

,

(34)

where φ1 = b
2 X30N + l

2r X10N + 1
2r

√
2

(
2b − l

r

) + ϒN +
�N + ζN . The system would be in complete hydrostatic
equilibrium, if (during evolution) it can take a value equal
to the right hand side of the above expression. However, on
satisfying the above inequality, the system will move into
the unstable phase. This constraint is being acknowledged
through the �1 parameter, thereby emphasizing the impor-
tance of the matter stiffness factor in our investigation.

4.2 Post-Newtonian approximation

Here, we take the axial structural coefficients for the pN eras
and consider our outcomes up to O(ϕ). Using these relations
in Eq. (25), one may have the modified collapse equation at
the pN limit. This leads toan instability inequality through
the stiffness parameter

�1 <
r2(1 − 4φ){ϕ′ + 1

r (1 − ϕ)(1 − ϕ)θ }χpN + (1 − 2ϕ)
χpN

4 (ϕ′+ 3
2r )+ζ1

(1 − 2ϕ)φ′
pN + (1 − 2ϕ)φpN [ 7

4r + 1
2 ( 1

r − ϕ′)] + ζ2
,

(35)

where

ζ1 = 	K N0θ − 2b(1 − 3ϕ)

[
P ′

0 + 2

9
(2	′

I0 + 	′
I I0)

]

+ (1 + 2ϕ)

r
√

2

(
3b − a + 2aϕ − 3bϕ − 3l

r

)

+ l

2r
X10pN + b(1 − ϕ)

2
X30pN + ϒpN + �pN + ζpN ,

ζ2 = −r3(1 − ϕ)

2
√

2

	K N0χpN

μ0 + 	K N0

× [6(1 + ϕ)θ (1 − ϕ) + (1 + ϕ)θ (1 + ϕ) + 2(1 + ϕ)

×{(1 − ϕ)θ (1 + ϕ) + (1 + ϕ)θ (1 − ϕ)}]
+ (1 + 2ϕ)

2
√

2

(
	K N0χpN

μ0 + 	K N0

)
θ

,

and the subscript pN represents the effects of the quantities at
the pN era. The quantity ϒpN describes the reflection effects
of the non-static axial celestial body about its symmetry axis
at pN approximations. It is worth mentioning here that these
constraints coincide with those of [39] in the limit L → 0
for n = 2.

5 Instability of realistic star object

Perturbations of stars and black holes have been among
the main topics of relativistic astrophysics for the last few
decades. The description of such stellar objects has recently
attracted various researchers [55–60]. The stability analysis
of the general relativistic star process is an important but chal-
lenging endeavor. In such a study, the spherical symmetric
matter configuration is an exemplary one. Numerous realis-
tic objects like globular clusters, galactic bulges, and dark
matter halos can be considered to be of a roughly spherical
geometry. For better understanding of the cosmic censorship
hypothesis and the hoop conjecture, it is necessary to shed
light on the non-spherical collapse. The physical interest in
studying non-spherical symmetries is associated with the fact
that post-shocked clouds are left at the verge of gravitational
collapse forming cylinders or plates at scales of galaxy for-
mation and at scales of stellar formation in a galaxy. For
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instance, cylindrical distributions are closely related with the
problem of fragmentation of prestellar clouds [61].

We take into account a specific configuration of a non-
static axial spacetime. The main purpose is to study insta-
bility regimes of axially symmetric realistic objects that are
involved in the emission of gravitational radiation due to
meridional degrees of freedom. For this purpose, we assume
coupling of the system with an anisotropic fluid distribution
whose energy–momentum tensor is mentioned in Eq. (5).
Having arrived at this point, the relevant question is: does
an ideal (or non-anisotropic) matter configuration produce
gravitational radiation?

To answer such a burning issue, let us recall that in the
seminal paper of Bondi about the emission of gravitational
radiation (Section 6 of [62]), it is mentioned that for a rel-
ativistic dust cloud as well as for the dissipation-less case
of an ideal matter distribution, the relativistic system can-
not be anticipated to radiate (gravitationally). This is due to
the reversible feature of the equation of state as emission
of radiation is an irreversible phenomenon. This happens
once absorption is considered (and/or taking Sommerfeld
type constraints), which prevents the inflow of waves. This
implies that an entropy generator parameter/factor must be
present in the discussion of a relativistic source. However,
such a type of factor is not present in an ideal fluid and in
a collisionless dust cloud. In particular, the irreversibility of
gravitational wave emissions must be taken in the equation
of state with the help of an entropy increasing (dissipative)
parameter. In this scenario, Herrera et al. [63] described a
close relationship between vorticity and gravitational radia-
tion.

We consider the evolution of a non-static axisymmetric
self-gravitating system in f (R) gravity and assume that it is
in hydrostatic equilibrium at large past time. Now we want
to analyze the phase of equilibrium being disturbed. Will this
perturbation be relaxed (stable state) or will it grow (unsta-
ble state)? In this respect, one needs to take into account the
following instabilities:

1. Dynamical stability: what happens, if the stellar hydro-
static phase is perturbed?

2. Secular (thermal) stability: what happens, when the state
of thermal equilibrium is perturbed?

Since our system is coupled with anisotropic matter config-
urations without heat flux, we shall not discuss the second
case and confine ourselves to the dynamical instability of
relativistic origin. It is seen that for a hydrostatic phase, the
stability criterion is achieved by making a linearized field as
well as conservation equations against the radial perturba-
tion (14)–(17). It is noted that, during evolution, the realistic
object moves via several evolutionary patterns determined by
instability/stability degrees of freedom. This suggests that the

relativistic systems can be stable at one instance and not at
the other. Thus one needs to cope with the dynamical evolu-
tion of self-gravitating systems by calculating the instability
regions at the N as well as the pN regimes. Such epochs have
a vital role to play in the discussion of gravitational collapse
of compact objects.

The phenomenon of celestial collapse occurs when the
state of hydrostatic equilibrium of a stellar object is dis-
turbed. In celestial body, nuclear fission reactions occur
that start from hydrogen atoms and produce further com-
plex elements until a nuclear reactions chain stops with iron.
These reactions increase the pressure exerted by gas parti-
cles which counterbalances the gravitational attraction and
prevents the star from collapsing. However, with the pas-
sage of time, nuclear reactions decrease as the fuel burns
out. Consequently, the necessary pressure becomes insuffi-
cient for a collapsing body to be stable. At this point, the
gravitational force begins to pull matter toward the center
of a body and thus collapse initiates. A celestial body that
has exhausted all its nuclear fuel can give birth to three
possible compact objects (white dwarfs, neutron stars, and
black holes) on the basis of the initial mass of the collapsing
body.

It is well known that, in the scenario of the Newtonian
regime, the instability of spherical self-gravitating systems
depends purely on the mean value of the stiffness parame-
ter, �1 [64], which is the ratio of the fractional Lagrangian
variations between pressure and energy density experienced
by matter configurations following the motion. However, in
GR, the stability relies not only on the average value of �1

but also on the radius of the star. However, in the study of
a non-static axial reflection system in modified gravity, the
situation is quite different. (It is worthy to stress that we have
assumed �1 to be a constant entity throughout the analy-
sis.) The most important consequence of our study is that,
apart from affirming the GR results, �1 controls the emis-
sion of gravitational radiation along with the f (R) extra
degrees of freedom. The emission of gravitational radia-
tion causes the loss of both energy and angular momentum,
which increases the instability of the meridional axisymmet-
ric object.

More specifically, following the results of Chandrasekhar
[25], we deduce that if the anisotropic matter distribution
attains a stiffness equal to the right hand side of Eqs. (34)
and (35), the system enters into the window of the hydro-
static equilibrium at the N and pN regimes. Further, if the
stiffness of the fluid increases in such a way that the frac-
tional value given at the right hand side of (34) and (35)
becomes a smaller one, then the system enters into the sta-
ble configurations at both the N and the pN approximations,
respectively. Dosopoulou et al. [65] explored the contribution
of magnetic fields in the emergence and existence of vortic-
ity. This strongly suggests that invoking magnetic fields in
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the study of the stability of gravitationally radiating sources
deserves attention for future work.

6 Conclusions

It is well known that the most general non-static axial geom-
etry incorporates reflection (meridional) and rotation effects
coming from the non-diagonal dtdθ and dtdφ metric coef-
ficients. In order to deal analytically with the instability
constraints of axially symmetric spacetime, several attempts
have been made by taking a restricted class of axial geometry.
In this paper, we have made a stability analysis of the merid-
ional axial stellar structure with a f (R) background. We per-
form an investigation in a metric f (R) gravity which give rise
to non-linear fourth order field equations. We have formu-
lated the collapse equation by using a perturbation scheme
in the generalized Euler equation. We assume a complete
hydrostatic equilibrium of the axial stellar structure at large
past time, i.e., T (−∞) = 0.

We have developed instability constraints at the N and
the pN epochs through the stiffness parameter, �1, using the
collapse equation. It is found that the axial stellar structure
would be unstable until it obeys Eq. (34) at the N regime,
while we have Eq. (35) at the pN era. Breaching of these
inequalities will eventually move the system toward a stable
window. These constraints depend upon the adiabatic index,
and static combinations of anisotropy, energy density, and
dark source corrections due to the R + εRn model. It is seen
that dark source corrections tend to stabilize the structure for-
mation phenomenon due to its non-attractive behavior, while
the presence of non-diagonal terms in the instability ranges
indicate the occurrence of gravitational radiation, which cor-
responds to the flow of super-energy [24].

We have found the non-vanishing component of vor-
ticity tensor which corresponds to a non-static meridional
axial structure coefficient. The inclusion of a non-diagonal
scale factor in the stability analysis leads to the interesting
phenomenon of gravitational radiation for εRn corrections.
These extra-order f (R) corrections affect the passive gravi-
tational mass, which in turn affects the rate of stellar collapse.
We have developed the instability constraints (34) and (35)
with the weak field and pN approximations, respectively.
These constraints can be applied to an axisymmetric self-
gravitating system with reflection degrees around the sym-
metry axis at some particular cosmic epochs, depending upon
the chosen values of n. We can categorize different eras of
the cosmic dynamics associated with εRn as follows:

• For n = 2, the instability constraints for the specific
model of the type R + εR2 can be obtained. The exis-
tence of the R2 correction in the field equations can be
helpful to explain the inflationary mechanism of the cos-

mos. The term αR2 represents an accelerated expansion
of the universe. This model is compatible with temper-
ature anisotropies observed in cosmic microwave back-
ground radiation [43–46] and hence is viable for infla-
tionary scalar field models.

• The choice n = 3 favors significantly massive compact
objects coming from cubic f (R) higher curvature terms
[36]. This provides a realistic signature of the presence
of more massive and huge self-gravitating stellar systems,
which have a direct correspondence with the observational
cosmology.

• This gravitational dynamics at a late-time universe era can
be obtained by substituting n = −1 in the instability con-
straints at both the N and the pN regimes. It is noticed
that the gravitational contribution due to a negative curva-
ture power serves as dark energy, thereby supporting the
current accelerating cosmic epochs [42].

• For ε = 0, instability constraints for Einstein gravity can
be obtained at both the N and the pN eras, which describe
a relatively less stable axial stellar structure.

Finally, we remark that supermassive stellar systems sur-
vive more abundantly in extended gravity than in GR, as such
theories (for instance f (R) gravity) are more likely to host
huge stars with smaller radii. This leads to the existence of
more dense relativistic systems, which have direct relevance
for observational gravitational physics. It is interesting to
mention here that all our results reduce to a restricted class
of instability analysis [39] by neglecting non-diagonal terms
and assuming n = 2 in the f (R) model.
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Appendix A

The extra f (R) curvature terms for Eqs. (10)–(12) are

D0 = V̇1 + X ′
1 + X ′

3

+
(

3B2r2AA′

�
+ 2A2B2r

�
+ 2r2A2BB ′

�
+ C ′

C

+ B ′

B

)
X1 +

(
3r2B2AAθ

�
+ Bθ

B
+ Cθ

C

+ A2r2BBθ

�

)
X3 +

(
r2B3 Ḃ

�
+ B ′

B

)
V2
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+ r2B2

�
(r2B ḂV3 + CĊV4) + Ẇ1 + (Y1 + Y3)

′

+ LW1

�
(AAθ + L L̇) + L L̇V1

�

+
(

3r2B2AA′

�
+ B ′

B
+ 2r A2B2

�
+ 2r2A2BB ′

�

+C ′

C
+ 4LL ′

�

)
Y1

(
Bθ

B
× 3r2B2AAθ

�
+ r2A2BBθ

�

+Cθ

C
+ 3Lr2B Ḃ

�
− r2B2L ′

2�
+ r LB2

�
+ r2LBB ′

�

−r2LB Ḃ

�
+ LLθ

�

)
Y3 +

(
3r2LB Ḃ

�
− r2B2L ′

2�

+r2LBB ′

�
+ r B2L

�
+ LLθ

�
−r2LB Ḃ

�

)
X3

+
(
r2B3 Ḃ

�
+ B ′

B
− LBBθ

�

)
W2

− LBBθ

�
V2 +

(
r LB2

�
+ r2BLB ′

�
− r2B2L ′

2�

)
(X2 + Y2)

+
(
r BLBθ

�
− r2B2Lθ

�
+ r4B3 Ḃ

�

)
W3

+
(
r BLBθ

�
− r2B2Lθ

�

)
V3 +

(
r2

�
B2CĊ − LCCθ

�

)

× W4 − LCCθ

�
V4, (A.1)

D1 = Ẋ1 −
(
r + r2B ′

B

)
W3 − CC ′

B2 W4 + X2θ + V ′
2

× AA′

B2 V1 +
(
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B
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�
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C
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�
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−
(
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B
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+
(

3Ḃ

B
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�
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C
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�
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�
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+
(
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�
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�

)
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(
2B ′

B
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�
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�
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�
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C
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)
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B
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(
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B
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X3, (A.2)

D2 = Ẋ3 + X ′
2 + V3θ + A3Aθ
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V1 − A2BBθ

�
V2

− A2CCθ

�
V4 +

(
r2B2AAθ

�
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�
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B
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C
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�
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B
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C
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�
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�

)
V1 −

(
A2BBθ

�
− BL Ḃ
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(r2BL Ḃ + 2Lθ − 2r2B Ḃ)
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B
+ Ċ
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X2. (A.3)

The perturbed parts of Eq. (10) are
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[
x ′
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(
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0r
2A0A′

0

�0
+ B ′

0

B0
+ 2A2

0B
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. (A.5)

The perturbed parts of Eq. (23) are
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