13 research outputs found

    Dynamical malaria models reveal how immunity buffers effect of climate variability

    Get PDF
    Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high-and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity

    Substantial asymptomatic submicroscopic Plasmodium carriage during dry season in low transmission areas in Senegal : implications for malaria control and elimination

    No full text
    Background In the progress towards malaria elimination, the accurate diagnosis of low-density asymptomatic infections is critical. Low-density asymptomatic submicroscopic malaria infections may act as silent reservoirs that maintain low-level residual malaria transmission in the community. Light microscopy, the gold standard in malaria diagnosis lacks the sensitivity to detect low-level parasitaemia. In this study, the presence and prevalence of submicroscopic Plasmodium carriage were investigated to estimate the parasites reservoir among asymptomatic individuals living in low transmission areas in Dielmo and Ndiop, Senegal during the dry season. Methods A total of 2,037 blood samples were collected during cross-sectional surveys prior the malaria transmission season in July 2013 (N = 612), June 2014 (N = 723) and June 2015 (N = 702) from asymptomatic individuals living in Dielmo and Ndiop, Senegal. Samples were used to determine the prevalence of submicroscopic Plasmodium carriage by real time PCR (qPCR) in comparison to microscopy considered as gold standard. Results The prevalence of submicroscopic Plasmodium carriage was 3.75% (23/612), 12.44% (90/723) and 6.41% (45/702) in 2013, 2014 and 2015, respectively. No Plasmodium carriage was detected by microscopy in 2013 while microscopy-based prevalence of Plasmodium carriage accounted for only 0.27% (2/723) and 0.14% (1/702) in 2014 and 2015, respectively. Plasmodium falciparum accounted for the majority of submicroscopic infections and represented 86.95% (20/23), 81.11% (73/90) and 95.55 (43/45) of infections in 2013, 2014 and 2015 respectively. Conclusion Low-density submicroscopic asymptomatic Plasmodium carriage is common in the study areas during the dry season indicating that traditional measures are insufficient to assess the scale of parasite reservoir when transmission reaches very low level. Control and elimination strategies may wish to consider using molecular methods to identify parasites carriers to guide Mass screening and Treatment strategies

    Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in five major African towns: high prevalence of Panton-Valentine leukocidin genes.

    Get PDF
    International audienceThe epidemiology of methicillin-susceptible Staphylococcus aureus (MSSA) in Africa is poorly documented. From January 2007 to March 2008, 555 S. aureus isolates were collected from five African towns in Cameroon, Madagascar, Morocco, Niger, and Senegal; among these, 456 unique isolates were susceptible to methicillin. Approximately 50% of the MSSA isolates from each different participating centre were randomly selected for further molecular analysis. Of the 228 isolates investigated, 132 (58%) belonged to five major multilocus sequence typing (MLST) clonal complexes (CCs) (CC1, CC15, CC30, CC121 and CC152) that were not related to any successful methicillin-resistant S. aureus (MRSA) clones previously identified in the same study population. The luk-PV genes encoding Panton-Valentine leukocidin (PVL), present in 130 isolates overall (57%), were highly prevalent in isolates from Cameroon, Niger, and Senegal (West and Central Africa). This finding is of major concern, with regard to both a source of severe infections and a potential reservoir for PVL genes. This overrepresentation of PVL in MSSA could lead to the emergence and spread of successful, highly virulent PVL-positive MRSA clones, a phenomenon that has already started in Africa
    corecore