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Assessing the influence of climate on the incidence of Plasmodium
falciparum malaria worldwide and how it might impact local malaria
dynamics is complex and extrapolation to other settings or future
times is controversial. This is especially true in the light of the partic-
ularities of the short- and long-term immune responses to infection.
In sites of epidemic malaria transmission, it is widely accepted that
climate plays an important role in driving malaria outbreaks. How-
ever, little is known about the role of climate in endemic settings
where clinical immunity develops early in life. To disentangle these
differences among high- and low-transmission settings we applied a
dynamical model to two unique adjacent cohorts of mesoendemic
seasonal and holoendemic perennial malaria transmission in Senegal
followed for two decades, recording daily P. falciparum cases. As
both cohorts are subject to similar meteorological conditions, we
were able to analyze the relevance of different immunological mech-
anisms compared with climatic forcing in malaria transmission. Trans-
mission was first modeled by using similarly unique datasets of
entomological inoculation rate. A stochastic nonlinear human–mos-
quito model that includes rainfall and temperature covariates, drug
treatment periods, and population variability is capable of simulating
the complete dynamics of reported malaria cases for both villages.
We found that under moderate transmission intensity climate is cru-
cial; however, under high endemicity the development of clinical
immunity buffers any effect of climate. Our models open the possi-
bility of forecasting malaria from climate in endemic regions but only
after accounting for the interaction between climate and immunity.

Plasmodium falciparum malaria | immunity | endemicity | climate |
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Climate plays a key role in driving the seasonal outbreaks of
malaria in areas of low or unstable malaria transmission (1–4).

Recent studies have shown the possibility of forecasting malaria
outbreaks on the basis of climate information and disease features
in these low-transmission settings (3, 5). For instance, in highland
malaria the role of warming temperatures is vividly debated (4, 6–8)
and in desert-epidemic fringes early studies reported predictions of
a widespread increase in malaria transmission (9–12). Recent
malaria models also predict a global net increase of the population
at risk (13); however, others suggest a shift in spatial distribution
rather than a large net increase in total malaria incidence worldwide
(14, 15). In epidemic fringes, variation in the incidence of disease is
largely determined by the seasonal variation of the mosquito pop-
ulation’s occurrence and density, which are essentially modulated by
local rainfall [e.g., if water limited (3, 16)] or temperature [e.g., if
altitude limited (2, 4, 8)]. This is not the case in holoendemic
transmission settings, where incidence of disease is determined not
only by external forces, but also by the development of clinical and
antiparasite immunity. Under intense transmission, clinical immunity
develops during childhood after many infections (17, 18), whereby
the individual can tolerate nonnegligible parasite densities without
showing symptoms. Subsequently, antiparasite immunity, which

enables control of parasite density, develops much more slowly (19),
leading to a state of premunition, whereby individuals harbor
chronic, potentially subpatent infections (20). Continued exposure
to the parasite is seemingly required to maintain such premunition
(21). Complete protection from further infections is rarely, if ever,
achieved. In such high-transmission regions, the relationship be-
tween local climate and disease is difficult to disentangle.
In this study, two unique long-term cohort datasets from villages

separated by 5 km but with markedly different malaria transmission
intensity (Fig. 1, Upper) enable us to showcase the relative roles of
internal and external factors in malaria epidemiology, assess the po-
tential degree of predictability emanating from climatic variability, and
generate estimates of key parameters in determining malaria pop-
ulation dynamics. To this end, we use a recently developed inference
methodology for nonlinear stochastic dynamical systems, successfully
applied to epidemic dynamics (3, 16) but never applied to endemic
settings. A general coupled mosquito–human compartment model
that includes possible key mechanisms common to both villages
serves our aim of disentangling differences related to immunity,
infectivity, superinfection, and asymptomatic infections as well as
to measure the relevance of local climate for each village.

Dynamic Malaria Transmission Model
We classify humans into five distinct classes: S1, susceptible to in-
fection; E, exposed (i.e., carrying a latent infection but not yet in-
fectious); I1, infected symptomatic and infectious; I2, infected
asymptomatic and infectious; and S2, recovered but with a subpatent
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load of parasites (not completely cleared) and potentially infectious
to mosquitoes (Fig. 2). Reinfection, which here includes both su-
perinfections and recrudescent infections that were formerly sub-
patent, but not new infections, was included as transitions from S2
to I1 and I2 classes. The force of reinfection was considered as a
constant proportion, si, of the force of infection μS1E (SI Text).
Given that the higher the transmission intensity is, the slower the
recovery rate (4, 22), immunity and recovery were considered as
functions of the transmission intensity as explained in SI Text. Drug
periods were modeled as constant functions for the corresponding
period (see SI Text for details), and treatment success probability
was considered through a parameter ts. We do not explicitly model
mosquito abundance, survival, or parasite development. Instead, we
model vector dynamics through a delayed equation for the force of
infection μS1EðtÞ, taking into account the fact that the parasite has
an extrinsic incubation period, τ, within the mosquito, during which
time the parasite passes through its sporogonic cycle (SI Text).
Transmission was modeled as proportional to the entomological
inoculation rate (EIR). Alternatively we replaced mosquito pop-
ulation variability by a set of functions as explained in SI Text to
account for yearly periodic forces, together with rainfall and tem-
perature anomalies to take into account intrayear variability. The
same model was applied to both villages to compare both fitted sets
of parameters and infer possible differences in the mechanisms
underlying the model. Environmental noise was also included in the
transmission term (SI Text). We took into account the yearly change
in the total human population (Table S1) and the mortality rate was
assessed by fitting population data for each of the villages as
explained in SI Text (see also Fig. S1). Fittings and simulations were
performed using open source code for statistical inference for
partially observed Monte Carlo processes (23).

Results and Discussion
Plasmodium falciparum incidence time series for Ndiop and
Dielmo are shown in Fig. 1, Upper. Ndiop, an area with scarce
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Fig. 1. (Upper) P. falciparummalaria incidence for Dielmo (red) and Ndiop (green). Vertical dotted black lines separate the four different drug regimes (from
left to right: Quinine, Chloroquine, Fansidar, and ACT). Incidence units are episodes per person per month. (Lower) Average annual cycles computed as the
average month by month for the whole time series of P. falciparum monthly incidence for Dielmo (red) and Ndiop (green), local rainfall (blue), and tem-
perature (orange). Shaded regions correspond to the SD.

Fig. 2. Flow diagram of the SDE model. Human classes are S1 (susceptible),
E (exposed, carrying a latent infection), I1 (symptomatic infected and in-
fectious), I2 (asymptomatic infected and infectious), and S2 (recovered
subpatent, i.e., having some resistance to reinfection). Mosquito–parasite
classes are λ1 (force of infection at previous time t − s) and λκ (force of
infection at current time t). The possibility of transition between classes X
and Y is denoted by a solid arrow, with the corresponding rate written as
μXY . The dotted arrows represent interactions between the human and
mosquito stages of the parasite. The model is formalized by Eqs. S1–S5 and
Eqs. S9–S11.
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vegetation and temporary surface water bodies supplied by sea-
sonal rainfalls (see figure 1, Ndiop, in ref. 24), shows mesoen-
demic seasonal dynamics. On the contrary, Dielmo, situated on
the marshy bank of a small permanent stream (see figure 1,
Dielmo, in ref. 24) exhibits perennial malaria transmission
leading to a holoendemic type of dynamics. The EIR time series
for Dielmo and Ndiop are shown in Fig. S2 classified according
to mosquito species. The EIR variability of Anopheles gambiae
sensu lato is clearly more seasonal than that of Anopheles funestus
as previously observed (25). Interestingly, there was a significant
positive correlation (rxy) between Dielmo cases and Dielmo’s
EIR of A. funestus (Pearson’s rxy = 0.36, P  value= 2.921e� 08),
but not with Dielmo’s EIR of A. gambiae s.l.. On the contrary for
the case of Ndiop there was a significant positive correlation (rxy)
between cases and Ndiop’s EIR of A. gambiae s.l. (Pearson’s
rxy = 0.37, P  value= 3.791e� 07), but not with Ndiop’s EIR cor-
responding to A. funestus.
In light of the knowledge about these species’ ecology and

larval habitat, where A. gambiae s.l. breeds in surplus surface
water and A. funestus prefers to breed in stagnant water at the
edge of rivers (25–27), one would expect A. gambiae s.l. dynamics
to be more dependent on rainfall variability (Fig. S3). We did
find a significant correlation between rainfall and Dielmo’s EIR
of A. gambiae s.l. (Pearson’s rxy = 0.42, P  value= 3.844e� 11) as
well as between rainfall and Ndiop’s EIR of A. gambiae s.l.
(Pearson’s rxy = 0.33, P  value= 3.844e� 3) whereas none was
obtained between rainfall and EIR of A. funestus either for
Dielmo or for Ndiop. It is therefore reasonable to expect that
rainfall acts as a pacemaker of A. gambiae s.l. population vari-
ability affecting in a more direct way Ndiop malaria dynamics.
Averaged malaria incidence in Dielmo and Ndiop together

with both mean local rainfall and temperature are shown in Fig.
1, Lower (see also Figs. S3 and S4). For the case of Dielmo we
observe a steady increase of malaria cases from March, reaching
a peak around the month of July, and then staying more or less
stationary with barely a second increase in October. This last
minor increase in Dielmo agrees with the timing of the Ndiop
single peak in malaria cases also occurring around October.
Rainfall peaks around August–September and temperature is
maximal around the month of July. Therefore, rainfall and
temperature are good candidates to influence Ndiop cases var-
iability. However, unlike Ndiop there is no clear picture of the
influence of rainfall on the fluctuations of malaria cases in
Dielmo’s first peak, unless the lower-amplitude anomalies were
sufficient to stimulate a large increase in mosquito population
and/or to significantly alter EIR values.
We found highly significant correlation values between Ndiop

cases and rainfall in the previous month (Pearson’s rxy = 0.75,
P  value= 2.2e� 16), which suggests that rainfall plays an important

role in Ndiop malaria dynamics, in agreement with the fact that
local climate variability drives malaria outbreaks in low-transmission
epidemic fringes (3, 4, 16). In the case of Dielmo, a high-trans-
mission perennial site, the second peak is seen to be significantly
modulated by rainfall in the previous month (Dielmo second
peak: Pearson’s rxy = 0.24, P  value= 0.6e� 3) albeit to a lesser
extent than in Ndiop. Dielmo’s second peak of cases shows a sig-
nificant negative correlation with temperature (Dielmo second
peak: Pearson’s rxy =−0.4, P  value= 0.7e� 10). Dielmo’s first peak
of cases is presumably related to the stream dynamics (permanent
water availability) and temperature as indicated by the significant
correlation with temperature (Dielmo first peak: Pearson’s rxy =
0.36, P  value= 0.3e� 7) and between A. funestus EIR (strongly
depending on the stream flow dynamics) and malaria first peak
cases in Dielmo (Pearson’s rxy = 0.2, P  value= 4.4e� 3). All these
associations suggest that climate variability plays an important role
in malaria dynamics and indicate that climate covariates should be
included in the malaria models.
Transmission variability was modeled in four different ways:

(i) only by means of the EIR, (ii) with a seasonal flexible function
[seasonal splines (Sp)], and (iii) with a combination of a seasonal
flexible function and climatic covariate anomalies in two alterna-
tive ways [seasonal splines plus linear combination of temperature
and rainfall (SpTR)] and SpROT (same as before plus rainfall
over temperature) as explained in SI Text. Likelihoods of these
transmission models for each of the drug periods are shown in
Table 1 together with second-order Akaike information criterion
(AICc) values; AICc is a likelihood-based criterion that penalizes
for higher number of parameters as well as for size of dataset (28).
For both Dielmo and Ndiop the fit improves when rain and
temperature anomalies are included in the models (AICc values in
Table 1 and Tables S2–S4). Values of AICc for each of the drug
periods (Table 1) show that the average seasonal variation in
climate (and therefore in the mosquito population), represented
by a flexible function not specified a priori and emerging freely
from the fitting procedure, is necessary to describe observed cases.
Overall the best performance corresponds to the SpTRmodel that
takes into account rainfall and temperature contributions in a
simplest parsimonious way, as an indicator of humidity conditions.
The sensitivity of these results with the inclusion of each of the
climate covariates is reported in SI Text, giving more support to
the tight association between rainfall and temperature to fluctu-
ations in mosquito population and parasite development and ul-
timately to malaria dynamics.
For Dielmo, fitted transmission with the SpTR model exhibits

two maxima as shown in Fig. 3. A smallest peak in transmission
occurs around June and a second peak in transmission starts to
rise in October, reaching its maximum around December. If we
accept some seasonality in Dielmo transmission, then people will

Table 1. Maximum likelihood of fits for different drug periods and different transmission dependence

Ndiop Dielmo

Quinine,
n= 26

Chloroquine,
n=95

Fansidar,
n=30 ACT, n=21

Quinine,
n= 57

Chloroquine,
n=106

Fansidar,
n=31 ACT, n= 27

Model p ℓ AICc ℓ AICc ℓ AICc ℓ AICc ℓ AICc ℓ AICc ℓ AICc ℓ AICc

EIR 4 −141 292 −433 874 −143 296 −94 198 −227 463 −398 804 −134 277 −121 252
Sp 3 −113 233 −381 768 −124 255 −90 187 −223 452 −399 804 −128 263 −122 251
SpTR 5 −109 231 −378 766 −121 254 −86 186 −223 457 −391 792 −121 254 −115 243
SpROT 6 −117 250 −521 1055 −119 254 −87 192 −222 458 −392 797 −121 257 −115 246

For each drug period transmission was modeled by means of the entomological inoculation rate (EIR), only with splines (Sp) and with splines and anomalies
of rain and temperature (SpTR and SpROT). The p-labeled column corresponds to the number of free parameters. The rest of the parameters were fixed at
the maximum-likelihood estimated values listed in Tables S3 and S4. The second-order Akaike information criterion (AICc) is computed as AICc =−2ℓ+ 2p+ ð2p
ðp+ 1ÞÞ=ðn−p− 1Þ with n the number of observations. The best fits are shown in boldface type. Overall the fit improves when temperature and rainfall
anomalies are considered (SpTR model).
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have been less exposed to new infections from January to June,
losing some short-term clinical immunity and responding more
clinically to the rise in infectious bites in July. Following the
onset of increased transmission intensity in July (due to the sea-
sonal increase in A. gambiae s.l.), by the time December arrives,
individuals will have had their clinical immunity boosted by
renewed increased exposure to infection and hence have reduced
clinical expression. Thus, even when transmission increases in
December, the development of short-term clinical immunity would
reduce the tendency to have clinical episodes toward the end of the
year as can be seen in Fig. 1, Lower. For the case of Ndiop, fitted
transmission with the SpTR model exhibits a single peak in the
seasonal cycle that attains its maximum during August (Fig. 3).
According to the SpTR model, transmission intensity is on average
10 times higher in Dielmo (Fig. 3, violet line/shading) than in
Ndiop (Fig. 3, green line/shading). This result is independent of our
previous knowledge that the number of infectious bites is 10-fold
lower in Ndiop than in Dielmo (SI Text), validating our modeling
approach. School holidays and harvest time coincide with the rainy
season and hence lead to temporary intraannual increases in
population size, although this variation is minimal and short-lived
(Fig. S5) and therefore was not considered in our model.
To be able to compare resulting parameter values between

Ndiop and Dielmo, we fitted malaria dynamics of both villages with
the same dependence of transmission on climate covariates [as
explained in SI Text (see also Figs. S6 and S7)]. Parameter values
are shown in column SpTR in Tables S3 and S4. Average times
from exposed latent to infected were similar in Ndiop and Dielmo
(1=muEI ≈ 10 d). By contrast, the probability of developing symp-
toms was much smaller in Dielmo (Ps ≈ 0.04) than in Ndiop
(Ps ≈ 0.8). To our knowledge, this result is in agreement with a
faster development of clinical immunity in Dielmo due to the cu-
mulative exposure to the parasite (29–32). The average time spent

as an asymptomatic but infectious individual (tI2S2) is ∼3 mo for
Ndiop and 1 mo for Dielmo. In other words, it takes longer to clear
the parasite in Ndiop than in Dielmo, reflecting the higher level of
antiparasite immunity in the area of higher transmission intensity.
Similarly, the time needed to completely clear the parasite (tS2S1) is
longer for Ndiop than for Dielmo.
Given that passive as well as active surveillance is performed in

both villages (as explained in SI Text), all of the infected symptomatic
people, i.e., people in the I1 class, receive drug treatment. Accord-
ing to our model 90% of the people in I1 (ts ≈ 0.9) recover in
∼11 d after drug treatment. However, we considered the possi-
bility of drug treatment failure due for example to parasite re-
sistance, in which case it would take between 3 mo and 5 mo to
go from the symptomatic (I1) to the asymptomatic class (I2)
without any treatment. This result is in agreement with recent
epidemiological observations in sub-Saharan Africa where the
average duration of infection was brought down from 270 d to
14 d by administration of drugs (33).
Interestingly for both villages the infectiousness of the asymp-

tomatic (I2) and subpatent (S2) classes is not negligible (Ndiop,
sf ≈ qf ≈ 0.5; Dielmo, sf ≈ 0.6, qf ≈ 0.8) where the infectivity of the
I1 class was set to one for comparison. Thus, the proportion of the
asymptomatic class infecting mosquitoes is higher in Dielmo than
in Ndiop. The reasons for this are not clear, but may reflect dif-
ferences in the immune state of asymptomatic individuals in the
two villages: i.e., despite all broadly belonging to an asymptomatic
class, the higher transmission intensity and hence more rapid ac-
quisition of clinical and antiparasite immunity in Dielmo may
contribute to differences in infectiousness. Children tend to have
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percentiles of the simulations. Simulations were done with parameters
extracted from 500 fits, weighting them according to their likelihood. All of the
simulations were done from the also fitted initial conditions, simulating all of
the time series ahead (i.e., with no readjustment of any parameter at any point
in time during the simulation). Model used: SpTR. (A) Dielmo; (B) Ndiop. (C and
D) Monthly average of the curves in A and B. Simulations are shown in blue/
gray and data in red. (C) Dielmo; (D) Ndiop.
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higher gametocyte prevalence rates (34), thus potentially making
the younger asymptomatics (in Dielmo) more infectious.
We found that the overall force of reinfection needed for an

individual to pass from asymptomatic (I2) to symptomatic (I1) is
comparable between both villages. This result is surprising given
that individuals from Dielmo have higher levels of clinical immu-
nity. As for this transition we are taking into account not only
superinfection but also recrudescent infections; the use of an age-
dependent threshold in Dielmo for asymptomatics may lead to
more immediate changes of infected category following superin-
fection and cumulative parasite densities than in Ndiop. Differ-
ences in the parasite density criteria defining the symptomatic class
in both villages may likewise lead to a rapid change of state simply
on the basis of within-host parasite population dynamics.
Finally, the force of infection needed to change from subpatent

(S2) to symptomatic (I1) in Dielmo is 20 times higher than the one
needed in Ndiop. This transition represents pure superinfection in
the sense that humans with ultralow parasite densities flip to the
symptomatic state. Recent mouse model studies have suggested
that superinfection is impaired by the first infection, but only when
the blood-stage parasite density exceeds a certain threshold (35);
however, the presence of a blood-stage infection can suppress
liver-stage immunity (36). Our findings are consistent with these
observations. In particular, the force of reinfection needed for
transition from subpatent (S2) to symptomatic (I1) was virtually
equal to the overall force of infection in Dielmo. This suggests that
subpatent infections in Dielmo are unlikely to recrudesce and
generate symptomatic infections, reflecting the high levels of
antiparasite and clinical immunity. It is notable that the relative
force of infection necessary for the transition from the subpatent to
asymptomatic states (S2 to I2) in Dielmo was lower, consistent with
there being greater levels of clinical than antiparasite immunity. In
Ndiop, the relative forces of infections necessary for subpatent
infections to transit to either asymptomatic or symptomatic in-
fections were similar, confirming our observations on the relative
absence of clinical immunity in this population. Notably, however,
the presence of an infection or a subpatent infection per se overall
increases the risk of a symptomatic (or asymptomatic) infection
than if the individual was not infected at all.
Simulations performed for the whole time series period by setting

initial conditions and parameters only from the fitting procedure
with the SpTR model (Tables S3 and S4) are shown in Fig. 4.
Remarkably, they are not next step predictions but 18-y trajectories
starting from initial conditions in the 1990s with no posterior
readjustment (Fig. 4). In this sense, they reproduce not only the
annual average cycles of cases for both villages (Fig. 4, Lower), but
also the dynamics of the whole time series for both villages (Fig. 4,
Upper). This remarkable agreement indicates that with the appro-
priate set of parameters the same structural model can be used to
describe Ndiop epidemic as well as Dielmo endemic dynamics.

Conclusions
The implementation of dynamical models in conjunction with
recently developed statistical inference methods allowed us to
determine some unknown epidemiological malaria parameters
as well as to confirm some of the known ones. Furthermore, it
enabled us to extract information on important unobserved
variables, such as transmission variability, and most significantly
to infer the relative importance of different covariates (e.g.,
climate variability) pertinent to the mechanisms underlying
malaria epidemiology. The emerging set of epidemiological
parameters consistent with some relevant field observations
allowed us to better understand important differences between
high- and low-transmission settings, related to parasite immunity,
clinical immunity, and reinfection. The dynamic model for
P. falciparum transmission applied to Dielmo and Ndiop showed
that the role of climatic covariates clearly differs in both villages.
Whereas in Ndiop rainfall and temperature are key drivers of

transmission determining most of the interannual variability in
malaria cases, in Dielmo those climate covariates only partially
account for the seasonal variation of the force of infection. Cli-
mate plays an important role in the increase in malaria cases in
Dielmo around July, contributing to the increase in clinical im-
munity. However, toward the end of the year, clinical immunity
reduces the number of clinical cases in the face of an increase in
transmission intensity. This new supporting evidence on the in-
teraction between climate and immunity in Dielmo, not observed
in Ndiop, suggests for the first time to our knowledge that clin-
ical immunity to malaria might buffer or even halt the effect of
climate on transmission intensity in endemic settings in general.
For instance, if clinical immunity decreases (e.g., after bed net
policies or insecticide campaigns), the distribution of recorded
malaria cases throughout the year would change accordingly,
making climate and immunity intertwined drivers of variation in
incidence of malaria. Recent multimodel approaches addressed
the potential expansion of malaria to currently uninfected areas by
performing predictions mainly based on climate (13). This study
shows that such extrapolation is valid only along the fringes where
the disease is unstable but has to be carefully addressed for en-
demic places where intrinsic factors such as immunity, reinfection,
and asymptomatics should be taken into account to reproduce the
observed temporal patterns. Our approach opens the possibility to
forecast also in malaria endemic regions and could be useful for
other datasets from very different epidemiological dynamics as
well as for other vector-borne diseases.

Materials and Methods
This program is supported by three different institutions: the Institut Pasteur
(Dakar, Senegal), the Institut de Recherche pour le Développement (Mar-
seille, France), and the Senegalese Ministry of Health and Prevention. An
agreement between these institutions defines all research activities con-
ducted in this program. The longitudinal surveys were approved by the
Ministry of Health of Senegal and the assembled population of the two
villages (as explained in SI Text). Written informed consent was obtained
from all participants. We studied two extensive long-term epidemiological
datasets of daily P. falciparum confirmed malaria cases, probably among the
best malaria records worldwide, recorded for 19 y (1990–2008) in Dielmo
and for 16 y (1993–2008) in Ndiop (see SI Text for more details) (37). Al-
though these western Senegalese villages are situated only 5 km apart, the
epidemiology of both villages is strikingly different. Dielmo village is situ-
ated on the marshy bank of a small permanent stream (see figure 1, Dielmo,
in ref. 24), where anopheline mosquitoes breed year-round (31, 38) and
malaria transmission is intense and perennial, with a mean 258 infected bites
per person per year (during 1990–2006) (27). Transmission is on average
10-fold lower in Ndiop (see figure 1, Ndiop, in ref. 24) but highly variable,
increasing during the rainy season from July to October (39). Exposure to
infection and acquisition of immunity therefore markedly differ in the vil-
lages (31, 32, 38, 40). This difference is most evident in the higher P. falciparum
prevalence rates of infection in Dielmo (80+%) compared with the seasonal
rates in Ndiop that change from 20% in the dry season to 70% in the rainy
season (31). Mosquitoes of the A. gambiae s.l. species complex are the main
vectors in both Ndiop and Dielmo. However, notably, A. funestus is also
present in Dielmo, largely because of the stream that provides a suitable
larval habitat. The intensity of malaria transmission was monitored during
the whole study period; night-time collections of mosquitoes landing on
volunteers were carried out monthly and the sporozoite rate was de-
termined. It was thus possible to estimate the EIR, i.e., the number of in-
fective bites per person per night, for every month of the whole period (see
ref. 41 for more information). From 1990 to 2008 four different drug re-
gimes were implemented: Quinine from 1990 to 1994, Chloroquine from
1995 to 2003, Fansidar from 2004 to mid-2006, and Artemisinin-based
combination therapy (ACT) from mid-2006 to 2008. Insecticide campaigns
were not performed until the implementation of bed nets starting from July
2008 in both villages (37). Rainfall time series from Dielmo (13,685662N,
16,38463W) and Ndiop (13,724620N, 16,409324W) come from a meteoro-
logical ground-based manually operated station in each village. Tempera-
ture was extracted from National Oceanic and Atmospheric Administration
National Climate Data Center Global Hydrology and Climatology Network v2
(42) averaged from the four nearest villages (Cap Skirring, Kaolack, Diourbel,
and Ziguinchor).
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