274 research outputs found

    Cereal cultivars innovations adapted to organic production: A new challenge

    Get PDF
    To face and better manage the development of new varieties in a society calling for more and more transparency, the French National Research Institute (INRA) has get involved in an ambitious reflexive program about the question of "impacts, acceptability and management of varietal innovations" engaging all its thematic research departments. New collaboration between social and technical sciences are promoted to produce, from exemplary case studies, generic concepts and tools to assess the different types of impact of a new variety. Breeding and management of new genetic materials adapted to organic farming conditions constitute an appropriate theme to develop such an integrated process. A pluridisciplinary research team, associating plant breeders, soil scientists, ecologists, agronomists, economists, sociologists, in close collaboration with professionals , will try to assess both the agroenvironmental and socioeconomic impacts of changes, by studying current dynamics around original durum wheat and rice cultivars adapted to organic production in different territories

    An integrated study of the development of organic rice cultivation in the Camargue (France)-

    Get PDF
    In the Camargue, rice and durum wheat are associated in rotations that have an ambivalent ecological impact: on the one hand, these two crops contribute to the preservation of the surrounding ecosystem, while on the other hand, when cropped intensively, they can threaten the ecological equilibrium of this protected area. In this context, organic agriculture would seem to be an alternative adopted by a certain number of producers and processors. However, the pioneers of this practice encounter numerous problems, both agronomic and economic. The study presented here aims: to construct a pluridisciplinary approach to analyse the conditions of the development of organic cereal cultivation in the Camargue: to identify the principal factors that limit the development of this new practice: to produce knowledge useful in helping ricegrowers put into practice organic cropping systems

    SVOM pointing strategy: how to optimize the redshift measurements?

    Full text link
    The Sino-French SVOM mission (Space-based multi-band astronomical Variable Objects Monitor) has been designed to detect all known types of gamma-ray bursts (GRBs) and to provide fast and reliable GRB positions. In this study we present the SVOM pointing strategy which should ensure the largest number of localized bursts allowing a redshift measurement. The redshift measurement can only be performed by large telescopes located on Earth. The best scientific return will be achieved if we are able to combine constraints from both space segment (platform and payload) and ground telescopes (visibility).Comment: Proceedings of Gamma-Ray Bursts 2007 conference, Santa Fe, USA, 5-9 November 2007. Published in AIP conf. proc. 1000, 585-588 (2008

    Relativistic correlation correction to the binding energies of the ground configuration of Beryllium-like, Neon-like, Magnesium-like and Argon-like ions

    Get PDF
    Total electronic correlation correction to the binding energies of the isoelectronic series of Beryllium, Neon, Magnesium and Argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.Comment: version soumise 3/08/200

    Relativistic calculations of pionic and kaonic atoms hyperfine structure

    Full text link
    We present the relativistic calculation of the hyperfine structure in pionic and kaonic atoms. A perturbation method has been applied to the Klein-Gordon equation to take into account the relativistic corrections. The perturbation operator has been obtained \textit{via} a multipole expansion of the nuclear electromagnetic potential. The hyperfine structure of pionic and kaonic atoms provide an additional term in the quantum electrodynamics calculation of the energy transition of these systems. Such a correction is required for a recent measurement of the pion mass

    La construction d’une démarche interdisciplinaire à partir de l’émergence de la céréaliculture biologique en Camargue: le projet CEBIOCA

    Get PDF
    La céréaliculture biologique apparait comme une alternative aux modes de production conventionnels, pour un nombre croissant d'agriculteurs de Camargue. Le programme CEBIOCA cherche à appuyer le développement de ce prototype d'agriculture en favorisant l'élaboration de pratiques agricoles pertinentes, la production de matériel végétal adapté et la mesure des impacts de la conversion à l'AB. Un groupe de travail interdisciplinaire, associant génétique, agronomie, malherbologie, écologie et sociologie s'est constitué à l'occasion de la réponse à l'appel d'offre CIAB et au cours de la première phase de fonctionnemet qui est présenté ici. Malgré certaines lacunes ou faiblesses dans la construction interdiciplinaire, les résultats font entrevoir des perspectives prometteuses,dans un contexte plus favorable, à condition que les partenariats scientifiques et professionnles soient renforcés

    Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations

    Full text link
    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of CSFs, many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the MCHF method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double- excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional CAS-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≤Z≤925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    Magnetic state of plutonium ion in metallic Pu and its compounds

    Full text link
    By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in \delta and \alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in both phases in agreement with experiment a nonmagnetic ground state was found with Pu ions in f^6 configuration with zero values of spin, orbital, and total moments. This result is determined by a strong spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a pseudogap between them, so that f^{5/2} subshell is already nearly completely filled with six electrons before Coulomb correlation effects were taken into account. The competition between spin-orbit coupling and exchange (Hund) interaction (favoring magnetic ground state) in 5f shell is so delicately balanced, that a small increase (less than 15%) of exchange interaction parameter value from J_H=0.48eV obtained in constrain LDA calculation would result in a magnetic ground state with nonzero spin and orbital moment values. For Pu compounds investigated in the present work, predominantly f^6 configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic moment values. Whereas pure jj coupling scheme was found to be valid for metallic plutonium, intermediate coupling scheme is needed to describe 5f shell in Pu compounds. The results of our calculations show that both spin-orbit coupling and exchange interaction terms in the Hamiltonian must be treated in a general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape
    • …
    corecore