126 research outputs found

    Polymeric distributed feedback lasers by room-temperature nanoimprint lithography

    Get PDF
    Room temperature nanoimprinting lithography is used to realize a distributed feedback laser by direct dry pressing of the conjugated polymer (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]). The laser device exhibits emission at 630 nm with a pump threshold of 25 mu J/cm(2) and a polarization contrast of the emitted light as large as 0.91. Therefore, room temperature nanoimprint lithography turns out to be very effective for producing stable patterns on light-emitting polymers for the one-step fabrication of nanopatterned optoelectronic devices. (c) 2006 American Institute of Physics

    Evaluation of polyneuropathy markers in type 1 diabetic kidney transplant patients and effects of islet transplantation: Neurophysiological and skin biopsy longitudinal analysis

    Get PDF
    OBJECTIVE - The purpose of this study was to evaluate whether islet transplantation may stabilize polyneuropathy in uremic type 1 diabetic patients (end-stage renal disease [ESRD] and type 1 diabetes), who received a successful islet-after-kidney transplantation (KI-s). RESEARCH DESIGN AND METHODS - Eighteen KI-s patients underwent electroneurographic tests of sural, peroneal, ulnar, and median nerves: the nerve conduction velocity (NCV) index and amplitudes of both sensory action potentials (SAPs) and compound motor action potentials (CMAPs) were analyzed longitudinally at 2, 4, and 6 years after islet transplantation. Skin content of advanced glycation end products (AGEs) and expression of their specific receptors (RAGE) were also studied at the 4-year follow-up. Nine patients with ESRD and type 1 diabetes who received kidney transplantation alone (KD) served as control subjects. RESULTS - The NCV score improved in the KI-s group up to the 4-year time point (P = 0.01 versus baseline) and stabilized 2 years later, whereas the same parameter did not change significantly in the KD group throughout the follow-up period or when a cross-sectional analysis between groups was performed. Either SAP or CMAP amplitudes recovered in the KI-s group, whereas they continued worsening in KD control subjects. AGE and RAGE levels in perineurium and vasa nervorum of skin biopsies were lower in the KI-s than in the KD group (P < 0.01 for RAGE). CONCLUSIONS - Islet transplantation seems to prevent long-term worsening of polyneuropathy in patients with ESRD and type 1 diabetes who receive islets after kidney transplantation. No statistical differences between the two groups were evident on cross-sectional analysis. A reduction in AGE/RAGE expression in the peripheral nervous system was shown in patients receiving islet transplantation. © 2007 by the American Diabetes Association

    Frequency-modulated electromagnetic neural stimulation (FREMS) as a treatment for symptomatic diabetic neuropathy: results from a double-blind, randomised, multicentre, long-term, placebo-controlled clinical trial

    Get PDF
    AIMS/HYPOTHESIS: The aim was to evaluate the efficacy and safety of transcutaneous frequency-modulated electromagnetic neural stimulation (frequency rhythmic electrical modulation system, FREMS) as a treatment for symptomatic peripheral neuropathy in patients with diabetes mellitus. METHODS: This was a double-blind, randomised, multicentre, parallel-group study of three series, each of ten treatment sessions of FREMS or placebo administered within 3 weeks, 3 months apart, with an overall follow-up of about 51 weeks. The primary endpoint was the change in nerve conduction velocity (NCV) of deep peroneal, tibial and sural nerves. Secondary endpoints included the effects of treatment on pain, tactile, thermal and vibration sensations. Patients eligible to participate were aged 18-75 years with diabetes for ≄ 1 year, HbA(1c) <11.0% (97 mmol/mol), with symptomatic diabetic polyneuropathy at the lower extremities (i.e. abnormal amplitude, latency or NCV of either tibial, deep peroneal or sural nerve, but with an evocable potential and measurable NCV of the sural nerve), a Michigan Diabetes Neuropathy Score ≄ 7 and on a stable dose of medications for diabetic neuropathy in the month prior to enrolment. Data were collected in an outpatient setting. Participants were allocated to the FREMS or placebo arm (1:1 ratio) according to a sequence generated by a computer random number generator, without block or stratification factors. Investigators digitised patients' date of birth and site number into an interactive voice recording system to obtain the assigned treatment. Participants, investigators conducting the trial, or people assessing the outcomes were blinded to group assignment. RESULTS: Patients (n = 110) with symptomatic neuropathy were randomised to FREMS (n = 54) or placebo (n = 56). In the intention-to-treat population (50 FREMS, 51 placebo), changes in NCV of the three examined nerves were not different between FREMS and placebo (deep peroneal [means ± SE]: 0.74 ± 0.71 vs 0.06 ± 1.38 m/s; tibial: 2.08 ± 0.84 vs 0.61 ± 0.43 m/s; and sural: 0.80 ± 1.08 vs -0.91 ± 1.13 m/s; FREMS vs placebo, respectively). FREMS induced a significant reduction in day and night pain as measured by a visual analogue scale immediately after each treatment session, although this beneficial effect was no longer measurable 3 months after treatment. Compared with the placebo group, in the FREMS group the cold sensation threshold was significantly improved, while non-significant differences were observed in the vibration and warm sensation thresholds. No relevant side effects were recorded during the study. CONCLUSIONS/INTERPRETATION: FREMS proved to be a safe treatment for symptomatic diabetic neuropathy, with immediate, although transient, reduction in pain, and no effect on NCV. TRIAL REGISTRATION: ClinicalTrials.gov NCT01628627. FUNDING: The clinical trial was sponsored by Lorenz Biotech (Medolla, Italy), lately Lorenz Lifetech (Ozzano dell'Emilia, Italy)

    Guillain-Barré syndrome and COVID-19: an observational multicentre study from two Italian hotspot regions

    Get PDF
    Objective: Single cases and small series of Guillain-Barré syndrome (GBS) have been reported during the SARS-CoV-2 outbreak worldwide. We evaluated incidence and clinical features of GBS in a cohort of patients from two regions of northern Italy with the highest number of patients with COVID-19. Methods: GBS cases diagnosed in 12 referral hospitals from Lombardy and Veneto in March and April 2020 were retrospectively collected. As a control population, GBS diagnosed in March and April 2019 in the same hospitals were considered. Results: Incidence of GBS in March and April 2020 was 0.202/100 000/month (estimated rate 2.43/100 000/year) vs 0.077/100 000/month (estimated rate 0.93/100 000/year) in the same months of 2019 with a 2.6-fold increase. Estimated incidence of GBS in COVID-19-positive patients was 47.9/100 000 and in the COVID-19-positive hospitalised patients was 236/100 000. COVID-19-positive patients with GBS, when compared with COVID-19-negative subjects, showed lower MRC sum score (26.3±18.3 vs 41.4±14.8, p=0.006), higher frequency of demyelinating subtype (76.6% vs 35.3%, p=0.011), more frequent low blood pressure (50% vs 11.8%, p=0.017) and higher rate of admission to intensive care unit (66.6% vs 17.6%, p=0.002). Conclusions: This study shows an increased incidence of GBS during the COVID-19 outbreak in northern Italy, supporting a pathogenic link. COVID-19-associated GBS is predominantly demyelinating and seems to be more severe than non-COVID-19 GBS, although it is likely that in some patients the systemic impairment due to COVID-19 might have contributed to the severity of the whole clinical picture

    Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies

    Get PDF
    Remodeling of extracellular matrix (ECM) is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR) is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA) promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies

    Supervised multivariate analysis of sequence groups to identify specificity determining residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins that evolve from a common ancestor can change functionality over time, and it is important to be able identify residues that cause this change. In this paper we show how a supervised multivariate statistical method, Between Group Analysis (BGA), can be used to identify these residues from families of proteins with different substrate specifities using multiple sequence alignments.</p> <p>Results</p> <p>We demonstrate the usefulness of this method on three different test cases. Two of these test cases, the Lactate/Malate dehydrogenase family and Nucleotidyl Cyclases, consist of two functional groups. The other family, Serine Proteases consists of three groups. BGA was used to analyse and visualise these three families using two different encoding schemes for the amino acids.</p> <p>Conclusion</p> <p>This overall combination of methods in this paper is powerful and flexible while being computationally very fast and simple. BGA is especially useful because it can be used to analyse any number of functional classes. In the examples we used in this paper, we have only used 2 or 3 classes for demonstration purposes but any number can be used and visualised.</p
    • 

    corecore