77 research outputs found

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review

    Valency of rare earths in RIn3 and RSn3: Ab initio analysis of electric-field gradients

    Full text link
    In RIn3 and RSn3 the rare earth (R) is trivalent, except for Eu and Yb, which are divalent. This was experimentally determined in 1977 by perturbed angular correlation measurements of the electric-field gradient on a 111Cd impurity. At that time, the data were interpreted using a point charge model, which is now known to be unphysical and unreliable. This makes the valency determination potentially questionable. We revisit these data, and analyze them using ab initio calculations of the electric-field gradient. From these calculations, the physical mechanism that is responsible for the influence of the valency on the electric-field gradient is derived. A generally applicable scheme to interpret electric-field gradients is used, which in a transparent way correlates the size of the field gradient with chemical properties of the system.Comment: 10 page

    The problem of a metal impurity in an oxide: ab-initio study of electronic and structural properties of Cd in Rutile TiO2

    Get PDF
    In this work we undertake the problem of a transition metal impurity in an oxide. We present an ab-initio study of the relaxations introduced in TiO2 when a Cd impurity replaces substitutionally a Ti atom. Using the Full-Potential Linearized-Augmented-Plane-Wave method we obtain relaxed structures for different charge states of the impurity and computed the electric-field gradients (EFGs) at the Cd site. We find that EFGs, and also relaxations, are dependent on the charge state of the impurity. This dependence is very remarkable in the case of the EFG and is explained analyzing the electronic structure of the studied system. We predict fairly anisotropic relaxations for the nearest oxygen neighbors of the Cd impurity. The experimental confirmation of this prediction and a brief report of these calculations have recently been presented [P.R.L. 89, 55503 (2002)]. Our results for relaxations and EFGs are in clear contradiction with previous studies of this system that assumed isotropic relaxations and point out that no simple model is viable to describe relaxations and the EFG at Cd in TiO2 even approximately.Comment: 11 pages, 8 figures, Revtex 4, published in Physical Review

    Spatial Dynamics Of Vertical And Horizontal Intergovernmental Collaboration

    Full text link
    Although researchers have made progress in understanding motivations behind local government collaboration, there is little research that explores the spatial dynamics of such interactions. Does the idea of collaboration travel horizontally, passed from neighbor to neighbor, or is vertical leadership from state, county, or regional actors more important in influencing local governments’ decisions to share resources and functions? What factors influence local governments’ choices to collaborate with their neighbors versus a regional entity, county, or state government? In this article, we investigate the importance of vertical and horizontal influences when local governments decide to collaborate around land use planning. Using data from a survey of Michigan local government officials, we take a spatial statistical approach to answering this question. We find widespread evidence of collaboration at multiple scales, and observe patterns of both horizontal and vertical influence. We also find that contextual factors help to explain these patterns of collaboration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112248/1/juaf12139.pd
    • …
    corecore