42,500 research outputs found

    Ways to Increase your Milk Check

    Get PDF
    PDF pages: 1

    Atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, Ta investigated with density functional theory

    Full text link
    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well, are evaluated. The dependence thereof on the thermodynamic environment, i.e. the chemical conditions of a growing Z-phase precipitate, is studied and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis, by atom probe tomography or transmission electron microscopy, to the theoretical modeling of the formation process of the Z phase from binary transition metal nitrides

    Scalaron-Higgs inflation

    Full text link
    In scalaron-Higgs inflation the Standard Model Higgs boson is non-minimally coupled to gravity and the Einstein-Hilbert action is supplemented by the quadratic scalar curvature invariant. For the quartic Higgs self-coupling λ\lambda fixed at the electroweak scale, we find that the resulting inflationary two-field model effectively reduces to a single field model with the same predictions as in Higgs inflation or Starobinsky inflation, including the limit of a vanishing non-minimal coupling. For the same model, but with the scalar field a priori not identified with the Standard Model Higgs boson, we study the inflationary consequences of an extremely small λ\lambda. Depending on the initial conditions for the inflationary background trajectories, we find that the two-field dynamics either again reduces to an effective single-field model with a larger tensor-to-scalar ratio than predicted in Higgs inflation and Starobinsky inflation, or involves the full two-field dynamics and leads to oscillatory features in the inflationary power spectrum. Finally, we investigate under which conditions the inflationary scenario with extremely small λ\lambda can be realized dynamically by the Standard Model renormalization group flow and discuss how the scalaron-Higgs model can provide a natural way to stabilize the electroweak vacuum.Comment: References added, abstract changed, overall discussion improved, 31 pages (two-column layout), 18 figures; new subsection (VI C) added with precise conditions for a SM RG driven realization of the extremely small Higgs self-coupling scenari

    The Theory of Scanning Quantum Dot Microscopy

    Full text link
    Electrostatic forces are among the most common interactions in nature and omnipresent at the nanoscale. Scanning probe methods represent a formidable approach to study these interactions locally. The lateral resolution of such images is, however, often limited as they are based on measuring the force (gradient) due to the entire tip interacting with the entire surface. Recently, we developed scanning quantum dot microscopy (SQDM), a new technique for the imaging and quantification of surface potentials which is based on the gating of a nanometer-size tip-attached quantum dot by the local surface potential and the detection of charge state changes via non-contact atomic force microscopy. Here, we present a rigorous formalism in the framework of which SQDM can be understood and interpreted quantitatively. In particular, we present a general theory of SQDM based on the classical boundary value problem of electrostatics, which is applicable to the full range of sample properties (conductive vs insulating, nanostructured vs homogeneously covered). We elaborate the general theory into a formalism suited for the quantitative analysis of images of nanostructured but predominantly flat and conductive samples

    Question of quantum equivalence between Jordan frame and Einstein frame

    Full text link
    In the framework of a general scalar-tensor theory, we investigate the equivalence between two different parametrizations of fields that are commonly used in cosmology - the so-called Jordan frame and Einstein frame. While it is clear that both parametrizations are mathematically equivalent at the level of the classical action, the question about their mathematical equivalence at the quantum level as well as their physical equivalence is still a matter of debate in cosmology. We analyze whether the mathematical equivalence still holds when the first quantum corrections are taken into account. We explicitly calculate the one-loop divergences in both parametrizations by using the generalized Schwinger-DeWitt algorithm and compare both results. We find that the quantum corrections do not coincide off shell and hence induce an off shell dependence on the parametrization. According to the equivalence theorem, the one-loop divergences should however coincide on shell. For a cosmological background, we show explicitly that the on shell equivalence is indeed realized by a nontrivial cancellation.Comment: 18 pages, 1 figure, revised version accepted for publication in Physical Review D, new title, section V, VI and VIII of previous arXiv version removed, references update
    corecore