133 research outputs found

    Human-Robot Team Interaction Through Wearable Haptics for Cooperative Manipulation

    Get PDF
    The interaction of robot teams and single human in teleoperation scenarios is beneficial in cooperative tasks, for example the manipulation of heavy and large objects in remote or dangerous environments. The main control challenge of the interaction is its asymmetry, arising because robot teams have a relatively high number of controllable degrees of freedom compared to the human operator. Therefore, we propose a control scheme that establishes the interaction on spaces of reduced dimensionality taking into account the low number of human command and feedback signals imposed by haptic devices. We evaluate the suitability of wearable haptic fingertip devices for multi-contact teleoperation in a user study. The results show that the proposed control approach is appropriate for human-robot team interaction and that the wearable haptic fingertip devices provide suitable assistance in cooperative manipulation tasks

    Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) tissue represents the primary source of clinical tissue and is routinely used in MALDI-MSI studies. However, it is not particularly suitable for lipidomics imaging given that many species are depleted during tissue processing. Irrespective, a number of solvent-resistant lipids remain, but their extraction may be hindered by the cross-link between proteins. Therefore, an antigen retrieval step could enable the extraction of a greater number of lipids and may provide information that is complementary to that which can be obtained from other biomolecules, such as proteins. In this short communication, we aim to address the effect of performing antigen retrieval prior to MALDI-MSI of lipids in FFPE tissue. As a result, an increased number of lipid signals could be detected and may have derived from lipid species that are known to be implicated in the lipid-protein cross-linking that is formed as a result of formalin fixation. Human renal cancer tissue was used as a proof of concept to determine whether using these detected lipid signals were also able to highlight the histopathological regions that were present. These preliminary findings may highlight the potential to enhance the clinical relevance of the lipidomic information obtained from FFPE tissue

    Programming Robots With Events

    Get PDF
    International audienceWe introduce how to use event-based style to program robots through the INI programming language. INI features both built-in and user-defined events, a mechanism to handle various kinds of changes happening in the environment. Event handlers run in parallel either synchronously or asynchronously, and events can be reconfigured at runtime to modify their behavior when needed. We apply INI to the humanoid robot called Nao, for which we develop an object tracking program

    In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression

    Get PDF
    Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer

    Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy

    Towards the Definition of the Molecular Hallmarks of Idiopathic Membranous Nephropathy in Serum Proteome: A DIA-PASEF Approach

    Get PDF
    Idiopathic membranous nephropathy (IMN) is a pathologically defined disorder of the glomerulus, primarily responsible for nephrotic syndromes (NS) in nondiabetic adults. The underlying molecular mechanisms are still not completely clarified. To explore possible molecular and functional signatures, an optimised mass spectrometry (MS) method based on next-generation data-independent acquisition combined with ion-mobility was applied to serum of patients affected by IMN (n = 15) or by other glomerulopathies (PN) (n = 15). The statistical comparison highlighted a panel of 57 de-regulated proteins with a significant increase in lipoprotein-related proteins (APOC1, APOB, APOA1, APOL1 and LCAT) and a substantial quantitative alteration of key serpins (including A4, D1, A7, A6, F2, F1 and 1) possibly associated with IMN or NS and podocyte stress. A critical dysregulation in metabolisms of lipids (e.g., VLDL assembly and clearance) likely to be related to known hyperlipidemia in IMN, along with involvement of non-classical complement pathways and a putative enrolment of ficolin-2 in sustaining the activation of the lectin-mediated complement system have been pinpointed. Moreover, mannose receptor CD206 (MRC1-down in IMN) and biotinidase (BTD-up in IMN) are able alone to accurately distinguish IMN vs. PN. To conclude, our work provides key proteomic insights into the IMN complexity, opening the way to an efficient stratification of MN patients

    Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations

    Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry

    Get PDF
    Introduction: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). Results: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. Discussion/conclusion: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians

    Optimization-Based wearable tactile rendering

    Get PDF
    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches
    corecore