57 research outputs found

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    CdSe-single-nanoparticle based active tips for near-field optical microscopy

    Get PDF
    We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Surface plasmon polaritons on thin-slab metal gratings

    Get PDF
    Ian R. Hooper and J. Roy Sambles, Physical Review B, Vol. 67, article 235404 (2003). "Copyright © 2003 by the American Physical Society."In a recently published paper [U. Schröter and D. Heitmann, Phys. Rev. B 60, 4992 (1999)] an unexpected result occurred when light was incident upon a periodically corrugated thin metal film when the corrugations on the two interfaces were identical and in phase with each other. It was observed that it was not possible to excite the surface plasmon polariton on the metal surface facing away from the incoming light, and they ascribed this to the lack of a thickness variation within the metal. In this paper a somewhat different interpretation of their results is presented, which shows that the surface plasmon polariton (SSP) is in fact very weakly excited on the transmission side of such structures. It is explained why this coupling is so weak in terms of the cancellation of the evanescent diffracted orders from the two diffractive surfaces and how, by changing the phase between the grating on either surface, this coupling becomes much stronger. An explanation for the observation that SPP excitation on such structures may lead to either transmission maxima or minima is also presented

    Surface plasmon polaritons on narrow-ridged short-pitch metal gratings

    Get PDF
    Ian R. Hooper and J. Roy Sambles, Physical Review B, Vol. 66, article 205408 (2002). "Copyright © 2002 by the American Physical Society."The reflectivity of short pitch metal gratings consisting of a series of narrow Gaussian ridges in the classical mount has been modeled as a function of frequency and in-plane wave vector (the plane of incidence containing the grating vector) for various ridge heights. Surface plasmon polaritons (SPP’s) are found to be excited even in the zero-order region of the spectrum. These may result in strong absorption of radiation polarized with its electric field in the plane of incidence (transverse magnetic). For zero in-plane wave vector the SPP modes consist of a symmetric charge distribution on either side of the grating ridges, a family of these modes existing with different numbers of field maxima per grating period. Because of the charge symmetry these modes may only be coupled to at angles away from normal incidence where strong resonant absorption may then occur. The dispersion of these SPP modes as a function of the in-plane wave vector is found to be complex arising from the formation of very large band gaps due to the harmonic content of the grating profile, the creation of a pseudo high-energy mode, and through strong interactions between different SPP bands

    Double-period zero-order metal gratings as effective selective absorbers

    Get PDF
    W.-C. Tan, J. Roy Sambles, and T. W. Preist, Physical Review B, Vol. 61, pp. 13177-13182 (2000). "Copyright © 2000 by the American Physical Society."The electromagnetic response of a zero-order metal grating having a primary deep short-period component and a shallow long-period component is modeled. It is found that such a metal grating has an unusual surface-plasmon-polariton band structure and exhibits strong selective absorption of incident radiation. This opens up potential for designing metal surfaces with specific optical response features

    Rough droplet model for spherical metal clusters

    Full text link
    We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid drop model. These deformations correspond to a surface roughness which we characterize by a single parameter Δ\Delta. We derive a simple analytic approximate expression determining Δ\Delta as a function of temperature and cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis and compare with recent data for shell energy of sodium clusters in the size range 50<N<25050 < N < 250. A small surface roughness Δ0.6\Delta\simeq 0.6 \AA~ is seen to give a reasonable account of the decrease of amplitude of the shell structure observed in experiment. Moreover -- contrary to usual Jahn-Teller type of deformations -- roughness correctly reproduces the shape of the shell energy in the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to appear in Phys. Rev.

    Surface plasmon-related resonances on deep and asymmetric gold gratings

    Get PDF
    M. Kreiter, S. Mittler, W. Knoll, and J. Roy Sambles, Physical Review B, Vol. 65, article 125415 (2002). "Copyright © 2002 by the American Physical Society."Based on theoretical calculations, the surface plasmonlike resonances on deep and asymmetric gold gratings are reinvestigated and assigned to two classes possessing different characteristic symmetry properties. Reflectivity measurements on deep grating structures with varying depth and asymmetry allow for a detailed study of the influence of these parameters on the lowest-order resonances as well as the experimental observation of a higher-order resonance

    Flat photonic bands in guided modes of textured metallic microcavities

    Get PDF
    M. G. Salt and William L. Barnes, Physical Review B, Vol. 61, pp. 11125-11135 (2000). "Copyright © 2000 by the American Physical Society."A detailed experimental study of how wavelength-scale periodic texture modifies the dispersion of the guided modes of λ/2 metal-clad microcavities is presented. We first examine the case of a solid-state microcavity textured with a single, periodic corrugation. We explore how the depth of the corrugation and the waveguide thickness affect the width of the band gap produced in the dispersion of the guided modes by Bragg scattering off the periodic structure. We demonstrate that the majority of the corrugation depths studied dramatically modify the dispersion of the lowest-order cavity mode to produce a series of substantially flat bands. From measurements of how the central frequency of the band gap varies with direction of propagation of the guided modes, we determine a suitable two-dimensional texture profile for the production of a complete band gap in all directions of propagation. We then experimentally examine band gaps produced in the guided modes of such a two-dimensionally textured microcavity and demonstrate the existence of a complete band gap for all directions of propagation of the lowest-order TE-polarized mode. We compare our experimental results with those from a theoretical model and find good agreement. Implications of these results for emissive microcavity devices such as light-emitting diodes are discussed
    corecore