2,516 research outputs found

    High Resolution Near-Infrared Spectra of Protostars

    Get PDF
    We present new high resolution (R = 21,000) near-infrared (2 microns) spectroscopic observations of a sample of Class I and flat-spectrum protostellar objects in the rho Ophiuchi dark cloud. None of the five Class I spectra show CO v = 0 -- 2 absorption features, consistent with high K-band continuum veilings, 4 <= r_k <= 20 and fast stellar rotation, assuming that the underlying protostellar photospheres are of late spectral type, as is suggested by the low luminosities of most of these objects. Two of the flat-spectrum protostellar objects also show no absorption features and are likely to be highly veiled. The remaining two flat-spectrum sources show weak, broad absorptions which are consistent with an origin in quickly rotating (v sin i ~ 50 km / s) late-type stellar photospheres which are also strongly veiled, r_k = 3 - 4. These observations provide further evidence that: 1)-Class I sources are highly veiled at near-infrared wavelengths, confirming previous findings of lower resolution spectroscopic studies; and 2)- flat-spectrum protostars rotate more rapidly than classical T Tauri stars (Class II sources), supporting findings from a recent high resolution spectroscopic study of other flat-spectrum sources in this cloud. In addition our observations are consistent with the high rotation rates derived for two of the Class I protostellar objects in our sample from observations of variable hard X-ray emission obtained with the ASCA satellite. These observations suggest that certain Class I sources can rotate even more rapidly than flat-spectrum protostars, near breakup velocity.Comment: 16 pages including 2 tables and 2 figures (AASTeX 5.x) to be published in The Astronomical Journal July 200

    Measurements of the Cerenkov light emitted by a TeO2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cerenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. In this paper, the results of the analysis of the light emitted by a TeO2 crystal at room temperature when transversed by a cosmic ray are reported. Light is promptly emitted after the particle crossing and a clear evidence of its directionality is also found. These results represent a strong indication that Cerenkov light is the main, if not even the only, component of the light signal in a TeO2 crystal. They open the possibility to make large improvements in the performance of experiments based on this kind of material

    Low-Mass Star Formation and the Initial Mass Function in the Rho Ophiuchi Cloud Core

    Full text link
    We have obtained moderate-resolution (R=800-1200) K-band spectra for ~100 stars within and surrounding the cloud core of rho Oph. We have measured spectral types and continuum veilings and have combined this information with results from new deep imaging. The IMF peaks at about 0.4 M_sun and slowly declines to the hydrogen burning limit with a slope of ~-0.5 in logarithmic units (Salpeter is +1.35). Our lower limits on the numbers of substellar objects demonstrate that the IMF probably does not fall more steeply below the hydrogen burning limit, at least down to ~0.02 M_sun. We then make the first comparison of mass functions of stars and pre-stellar clumps (Motte, Andre, & Neri) measured in the same region. The similar behavior of the two mass functions in rho Oph supports the suggestion of Motte et al. and Testi & Sargent that the stellar mass function in young clusters is a direct product of the process of cloud fragmentation. After considering the effect of extinction on the SED classifications of the sample, we find that ~17% of the rho Oph stars are Class I, implying ~0.1 Myr for the lifetime of this stage. In spectra separated by two years, we observe simultaneous variability in the Br gamma emission and K-band continuum veiling for two stars, where the hydrogen emission is brighter in the more heavily veiled data. This behavior indicates that the disk may contribute significantly to continuous K-band emission, in contrast to the proposal that the infalling envelope always dominates. Our detection of strong 2 micron veiling (r_K=1-4) in several Class II and III stars, which should have disks but little envelope material, further supports this proposition.Comment: 35 pages, 14 figures, accepted to Ap

    Measurements and optimization of the light yield of a TeO2_2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cherenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. This paper describes the method developed to evaluate the amount of light produced by a crystal of TeO2_2 when hit by a 511 keV photon. The experimental measurements and the results of a detailed simulation of the crystal and the readout system are shown and compared. A light yield of about 52 Cherenkov photons per deposited MeV was measured. The effect of wrapping the crystal with a PTFE layer, with the aim of maximizing the light collection, is also presented

    Infrared Surface Brightness Fluctuations of the Coma Elliptical NGC 4874 and the Value of the Hubble Constant

    Get PDF
    We have used the Keck I Telescope to measure K-band surface brightness fluctuations (SBFs) of NGC 4874, the dominant elliptical galaxy in the Coma cluster. We use deep HST WFPC2 optical imaging to account for the contamination due to faint globular clusters and improved analysis techniques to derive measurements of the SBF apparent magnitude. Using a new SBF calibration which accounts for the dependence of K-band SBFs on the integrated color of the stellar population, we measure a distance modulus of 34.99+/-0.21 mag (100+/-10 Mpc) for the Coma cluster. The resulting value of the Hubble constant is 71+/-8 km/s/Mpc, not including any systematic error in the HST Cepheid distance scale.Comment: ApJ Letters, in press. Uses emulateapj5.st

    Long-term effects of automated mechanical peripheral stimulation on gait patterns of patients with Parkinson's disease

    Get PDF
    New treatments based on peripheral stimulation of the sensory–motor system have been inspiring new rehabilitation approaches in Parkinson’s disease (PD), especially to reduce gait impairment, levodopa washout effects, and the incidence of falls. The aim of this study was to evaluate the change in gait and the clinical status of PD patients after six sessions of a treatment based on automated mechanical peripheral stimulation (AMPS). Eighteen patients with PD and 15 age-matched healthy individuals (control group) participated in this study. A dedicated medical device delivered the AMPS. PD patients were treated with AMPS six times once every 4 days. All PD patients were treated in the off-levodopa phase and were evaluated with gait analysis before and after the first intervention (acute phase), after the sixth intervention, 48 h after the sixth intervention, and 10 days after the end of the treatment. To compare the differences among the AMPS interventions (pre, 6 AMPS, and 10 days) in terms of clinical scales, a t-test was used (α≤0.05). In addition, to compare the differences among the AMPS interventions (pre, post, 6 AMPS, 48 h and 10 days), the gait spatiotemporal parameters were analyzed using the Friedman test and the Bonferroni post-hoc test (α≤0.05). Also, for comparisons between the PD group and the control group, the gait spatiotemporal parameters were analyzed using the Mann–Whitney test and the Bonferroni post-hoc test (α≤0.05). The results of the study indicate that the AMPS treatment has a positive effect on bradykinesia because it improves walking velocity, has a positive effect on the step and stride length, and has a positive effect on walking stability, measured by the increase in stride length. These results are consistent with the improvements measured with clinical scales. These findings indicate that AMPS treatment seems to generate a more stable walking pattern in PD patients, reducing the well-known gait impairment that is typical of PD; regular repetition every 4 days of AMPS treatment appears to be able to improve gait parameters, to restore rhythmicity, and to reduce the risk of falls, with benefits maintained up to 10 days after the last treatment. The trial was registered online at ClinicalTrials.gov (number identifier: NCT0181528)

    User-Interface Modelling for Blind Users

    Get PDF
    The design of a user interface usable by blind people sets specific usability requirements that are unnecessary for sighted users. These requirements focus on task adequacy, dimensional trade-off, behaviour equivalence, semantic loss avoidance and device-independency. Consequently, the development of human-computer interfaces (HCI) that are based on task, domain, dialog, presentation, platform and user models has to be modified to take into account these requirements. This paper presents a user interface model for blind people, which incorporates these usability requirements into the above HCI models. A frame-work implementing the model has been developed and implemented in an electronic speaking bilingual software environment for blind or visually impaired people and in an educational system for children with special educational needs

    Reliability analysis and repair activity for the components of 350 kw inverters in a large scale grid-connected photovoltaic system

    Get PDF
    The reliability of photovoltaic (PV) generators is strongly affected by the performance of Direct Current/Alternating Current (DC/AC) converters, being the major source of PV under-performance. However, generally, their reliability is not investigated at component level: thus, the present work presents a reliability analysis and the repair activity for the components of full bridge DC/AC converters. In the first part of the paper, a reliability analysis using failure rates from literature is carried out for 132 inverters (AC rated power of 350 kW each) with global AC power of 46 MW in a large scale grid-connected PV plant. Then, in the second part of the work, results from literature are compared with data obtained by analyzing industrial maintenance reports in the years 2015–2017. In conclusion, the yearly energy losses involved in the downtime are quantified, as well as their availability

    Environmentally Friendly Sunscreens: Mechanochemical Synthesis and Characterization of β-CD Inclusion Complexes of Avobenzone and Octinoxate with Improved Photostability

    Get PDF
    We report on the mechanochemical synthesis of inclusion complexes obtained by reacting β-cyclodextrin (β-CD) with two widely used sunscreens, namely, avobenzone (AVO) and octinoxate (OCT). Formation of crystalline inclusion complexes was confirmed via a combination of solid-state techniques, including X-ray diffraction (XRD), Raman, and ATR-FTIR spectroscopies. A new, metastable polymorph of avobenzone was also isolated and characterized. NMR spectroscopy and thermal analyses (TGA and DSC) allowed us to evaluate the host/guest ratio and the water content (ca. 8H2O) in crystalline (β-CD)2·AVO and (β-CD)3·OCT2. Photodegradation of the two sunscreens upon inclusion in the hydrophobic cavity of β-CD was evaluated in solution via mass spectrometry (ESI-MS) and UV-vis spectroscopy and found to be sharply reduced. All findings indicate that the inclusion of AVO and OCT in β-CD might represent a viable route for the preparation of environmentally friendly sunscreens with improved photostability to be used in formulations of sun creams

    An L-type substellar object in Orion: reaching the mass boundary between brown dwarfs and giant planets

    Get PDF
    We present J-band photometry and low-resolution optical spectroscopy (600-1000 nm) for one of the faintest substellar member candidates in the young sigma Ori cluster, SOri 47 (I=20.53, Bejar et al. 1999). Its very red (I-J)=3.3+/-0.1 color and its optical spectrum allow us to classify SOri 47 as an L1.5-type object which fits the low-luminosity end of the cluster photometric and spectroscopic sequences. It also displays atmospheric features indicative of low gravity such as weak alkaline lines and hydride and oxide bands, consistent with the expectation for a very young object still undergoing gravitational collapse. Our data lead us to conclude that SOri 47 is a true substellar member of the sigma Ori cluster. Additionally, we present the detection of LiI in its atmosphere which provides an independent confirmation of youth and substellarity. Using current theoretical evolutionary tracks and adopting an age interval of 1-5 Myr for the sigma Ori cluster, we estimate the mass of SOri 47 at 0.015+/-0.005 Msun, i.e. at the minimum mass for deuterium burning, which has been proposed as a definition for the boundary between brown dwarfs and giant planets. SOri 47 could well be the result of a natural extension of the process of cloud fragmentation down to the deuterium burning mass limit; a less likely alternative is that it has originated from a protoplanetary disc around a more massive cluster member and later ejected from its orbit due to interacting effects within this rather sparse (~12 objects/pc^3) young cluster.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter
    • …
    corecore