
K. Miesenberger et al. (Eds.): ICCHP 2008, LNCS 5105, pp. 789–796, 2008.
© Springer-Verlag Berlin Heidelberg 2008

User-Interface Modelling for Blind Users

Fernando Alonso, José L. Fuertes, Ángel L. González,
 and Loïc Martínez

School of Computing, Technical University of Madrid,
Campus de Montegancedo, 28660-Boadilla del Monte, Madrid, Spain
{falonso,jfuertes,agonzalez,loic}@fi.upm.es

Abstract. The design of a user interface usable by blind people sets specific us-
ability requirements that are unnecessary for sighted users. These requirements
focus on task adequacy, dimensional trade-off, behaviour equivalence, semantic
loss avoidance and device-independency. Consequently, the development of
human-computer interfaces (HCI) that are based on task, domain, dialog, presen-
tation, platform and user models has to be modified to take into account these re-
quirements. This paper presents a user interface model for blind people, which
incorporates these usability requirements into the above HCI models. A frame-
work implementing the model has been developed and implemented in an elec-
tronic speaking bilingual software environment for blind or visually impaired
people and in an educational system for children with special educational needs.

Keywords: human-computer interfaces, blind user interface model, accessible
user interfaces.

1 Introduction

Apart from basic human-computer dialogue and design for all principles, adapting a
graphical user interface for blind people involves some specific usability require-
ments: (1) the task has to be adequate given the capabilities of blind users (task ade-
quacy), (2) the user interface has to provide a balance between the 2D access of
sighted people and the 1D access of blind people (dimensional trade-off), (3) the user
interface has to provide specific access for blind people to all the relevant user inter-
face objects (behaviour equivalence), (4) the user interface has to avoid losing rele-
vant semantic information (semantic loss avoidance) and (5) the interface has to deal
with a wide variation in the functionality and programming of the assistive technolo-
gies for blind people (device-independency).

These requirements have an impact on all the models used in human-computer in-
terface (HCI) development: the task, domain, dialog, presentation, platform and user
models. Based on these requirements and the experience acquired by our team over
the years, we have developed user interface model extensions that are presented in
this paper. This paper is structured as follows. Section 2 briefly summarizes the re-
lated work on user interfacing for the blind. Section 3 describes our proposal for a
user interface model for blind people. Section 4 presents the framework for blind user
interface development based on the previous model. Finally, section 5 presents some
concluding remarks.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

790 F. Alonso et al.

2 Related Work

There are some user interface management systems (UIMS), toolkits and frameworks
that can be used to design dual user interfaces (that is, graphical user interfaces that
can also be used by blind people because they combine visual and non-visual modali-
ties) [1]. This same philosophy can be applied to develop applications based on AJAX
or other technologies, establishing the mechanisms for implementation [2]. To get an
efficient final product, however, some formal interface design and implementation
method has to be applied with these tools.

In any case, it is essential, as pointed out by Moreley [3], to examine the funda-
mental accessibility issues for blind people at length and define appropriate usability
guidelines in order to design an interface suited for use by blind people. These guide-
lines, which should be based on experimental evidence [4], should be formulated not
only as general design principles or low-level and platform-specific recommenda-
tions, but should also be added to the actual HCI models that define a user interface.

Research has been published along these lines, aiming to define a model that is
adequate for blind users and the task they are to perform. For example, Grammenos et
al. [5] suggests that the application interaction needs to be modified to make it more
adequate for blind users, without affecting sighted users.

This research, aspiring to model user interfaces for blind people that incorporate
accessibility guidelines specified in ISO/UNE standards and specific usability re-
quirements for blind people, falls into this category.

3 User Interface Modelling for Blind People

The HCI model most widely accepted by researchers and designers is the modelling-
based definition by [6]. This HCI model involves creating a number of user interface
components. They include the task model, the domain model, the dialog model, the
presentation model, the platform model and the user model [7]. The task model gives
a structured representation of what activities the software user may want to perform.
The domain model describes the syntactic sequence of the interaction and is imple-
mented as a sequence of windows. The dialog model describes the interaction be-
tween the different objects making up the interface. The presentation model describes
the user interface’s visual appearance. The platform model describes the various com-
puter systems that may run a user interface. The user model describes the characteris-
tics of the user or user group.

There are several issues that each model has to account for when developing inter-
faces for blind users. These issues are derived from the usability requirements for
blind people described in the introduction: task adequacy, dimensional trade-off, be-
haviour equivalence, semantic loss avoidance and device independency (Fig. 1).

The task model is a formal description of the service the user accesses. It is organ-
ized hierarchically and contains information regarding task activation, its precondi-
tions, postconditions, and the actual task action [8].

In the task model, the tasks described should be checked, during problem analysis,
for incompatibility with what blind people can do (for the task adequacy require-
ment). Blind people cannot do activities that require hand-eye coordination, or

 User-Interface Modelling for Blind Users 791

Domain

Dialog

Platform

Presentation

Task

User

Dimensional
Trade-off

Behaviour
equivalence

Semantic loss
avoidanceDevice

independency

Task
Adequacy

Fig. 1. Influence of blind-user interfacing on HCI models

activities that require simultaneously controlling the state of more than one visual
item, because they communicate with the computer serially.

The domain model describes the syntactic sequence of human-computer interac-
tion through user interface objects and determines how the set of tasks and actions are
ordered [8].

The domain model has to provide a sequence of windows compatible with one-
dimensional navigation (for the dimensional trade-off requirement) and has to include
speech and Braille output for the transitions between user interface objects (behaviour
equivalence requirement). The domain model should define a sequence of windows
and window content that is compatible with 1 + 1 navigation (for the dimensional
trade-off requirement). Also, the domain model should include the information to be
output as speech and Braille in the transition from one window to another (for the be-
haviour equivalence requirement).

In the first place, the domain model should be represented hierarchically as a series
of trees linked by transitions between windows. Each window will be a tree whose
root identifies the window in question. The window components, like the title bar,
main menu, button bar, etc., will be its children. Each of these nodes will be decom-
posed into objects (e.g. each of the buttons in the bar) until the objects can be decom-
posed no further. Any leaf objects whose activation leads to the appearance of a new
logic window will have a link to the tree of this new display unit.

One important point when designing the domain model is the tree’s depth level for
each software window. Because blind users must necessarily navigate by levels
within the above tree and cannot “take a look” to find out where to go, the windows
should be designed to assure that their navigation tree is not overly complicated.
Therefore, the inclusion of several embedded containers is to be avoided.

To cater for the behaviour equivalence requirement, blind users should also be
given information about what happens when transitions between tree levels or trees
take place. This includes messages about the features of an open item, the type of
process that is taking place, the type of objects in the new level or, generally, any in-
formation that helps blind users to manage or understand the interface. This is espe-
cially relevant in the case of transitions between windows, because blind users could
easily get lost. For example, when a message window is opened, the following infor-
mation should be speech synthesized: window title, message text and active user in-
terface object.

792 F. Alonso et al.

The dialog model defines the commands as well as the purpose of each one.
Commands are executed via interaction techniques and may produce one or more sys-
tem responses [9].

The dialog model should enable keyboard-only access, define each user interface
object’s interaction process, define the access mechanisms to the object’s properties
(behaviour equivalence requirement), and should incorporate additional interaction
techniques to give access to important semantic information (semantic loss avoid-
ance).

First, the dialog model should be developed taking into account that blind users in-
put information using the keyboard or keyboard equivalents (such as speech recogni-
tion, Braille keyboards, etc.) only. This is because blind people cannot use pointing
devices that require coordinating vision and device movements. Therefore, the type of
interaction techniques that this model can use is limited.

It is especially important in this respect for the dialog model to specify that the tar-
get platform keyboard usage conventions should be retained. For example, if a key
combination is assigned a given function by convention (for example, CTRL + C for
copy), then the applications should not attempt to use these combinations for other
purposes.

Second, each user interface object’s interaction procedure must be defined in line
with blind people’s capabilities. There should be two chief rules in this interaction
procedure: keyboard-based interaction and access through synthesized speech or
Braille to the most important attributes of each user interface object.

Therefore, it is necessary to define which of each user interface object’s attributes
should be able to be queried to be sent to the speech synthesizer and Braille display.
In the case of a menu option, for example, access should be given to the text, the
mnemonic (underlined letter), associated keyboard accelerator, its state (active or in-
active) and, finally, its type: direct command, open dialog or open a submenu.

Finally, and under certain circumstances, alternative interaction techniques need to
be taken to perform a given command. This type of actions affects both the dialog and
the presentation model (e.g., a musical composition program for blind people should
offer special-purpose non-visual mechanisms for editing the score).

The presentation model is usually defined as the model that describes the visual
appearance of the user interface [10]. This way of looking at the presentation model is
good for graphical interfaces, but blind users perceive the interface using other senses,
like hearing or touch.

The presentation model should define the speech and Braille output for each user
interface object (behaviour equivalence requirement) and should define several detail
levels for different user experience levels. It should also guarantee that non-standard
objects containing graphical content provide enough semantic information (semantic
loss avoidance).

It is essential to take into account the differences there are between the synthesized
speech and Braille display outputs, differences that mostly lead to different messages
having to be generated for speech and Braille.

For example, information persists in Braille displays until the user takes an action,
which is not the case with speech; access to spoken information is sequential (the user
has to wait for the voice to reach the fragment of the target information), whereas it is
direct in Braille displays (users can move through the displayed information however

 User-Interface Modelling for Blind Users 793

they like); character attributes (bold, italic, underlined, etc.) can be represented in
Braille displays using points 7 and 8 of the 8-point Braille code. These attributes can-
not be represented in speech without interrupting the dialog.

Note also that the presentation should make provision for several detail levels. On
the one hand, novice blind users will want to receive as much information as possible
on each interface element as they learn to use the application. On the other hand, ex-
pert users will only want to receive the information that they need to do the job. Our
experience has led us to define three detail levels (also termed help levels): beginner,
intermediate and advanced.

The user interface designer has to take all this into account to define the speech and
Braille presentation of every user interface object. This is a two-step process:

1. Define the presentation of each user interface object’s attribute for speech and
Braille. For example, object type is represented by full text in speech (“Button”)
and in abbreviated form in Braille (“BT”). Another example is the presentation of
the mnemonic: it is represented as a separate character in speech and as an under-
lined letter in Braille.

2. Define the object attributes combination to generate the output message for each
detail level. The designer has to use different sorting techniques for speech and
Braille. For instance, the object’s name has to appear first in speech to enhance
navigation speed.

In doing so, the designer has to take special care to assure that the information sent
to the user via speech or Braille is semantically equivalent to what is given visually in
the graphical user interface. The goal is to check that users have all the information
they need to use the application to do their job.

The platform model contains information about the capabilities, constraints and
limitations of the target platform [8]. When developing user interfaces for blind peo-
ple, the platform model is affected by the device independency requirement.

For this purpose, the platform model should include speech and Braille output ca-
pabilities through standardized APIs, such as but not limited to:

• For speech: text to speech output, stop speech output, automatic spelling and radio
code spelling, management of queued speech messages, mechanism for the man-
agement of speech progress, changing speech parameters

• For Braille: text to Braille output, providing information about the display charac-
teristics (such as the display size), automatic management of text that is bigger than
the Braille display size, management of keys pressed in the Braille display, chang-
ing Braille parameters.

Examples of such APIs for speech are SAPI in Microsoft Windows [11] and Java
Speech for the Java platform [12].

Finally, the user model is a description of the characteristics of an individual user
or of a stereotype user group [9]. It is not intended to be a description of the mental
state of a user.

The user model has to include configuration parameters related to the semantic loss
avoidance and device-independency requirements, such as speech parameters (the de-
vice used, speed, tone, volume, etc.) and Braille parameters (the device used, Braille

794 F. Alonso et al.

code type, cursor type, presentation of character attributes, etc.) or the detail level of
the output messages (for beginner, intermediate and advanced).

4 A Framework for Blind User Interface Development

Based on the model we have developed a framework for developing user interfaces
for blind people, called FBLIND (Framework for BLind user INterface Develop-
ment). This framework has three main components [13]:

• A set of user interface design guidelines, which is based on software accessibility
standards [14] [15] and the experience acquired by our team over the years

• A programming library providing support for Speech and Braille Input and Output
(SBIO)

• And an interface development toolkit consisting of automatically adapted user in-
terface objects (BVCL).

Of several applications developed using FBLIND, DABIN, an electronic speaking
bilingual software environment for blind or visually impaired people, deserves a spe-
cial mention. DABIN (Fig. 2) was conceived as an environment housing a range of
bilingual dictionaries allowing users to choose the translation source and target lan-
guages, as well as the user interface language. It has a dual user interface, and can run
word searches, returning all the information about their translation in another lan-
guage, including grammatical categories, examples, remarks, etc. It now includes a
Spanish-English and English-Spanish dictionary, and a Spanish-French and French-
Spanish dictionary, and has user interfaces in Spanish, English and French.

Another developed application was the Proyecto Aprender (Learn Project) [16].
This system (Fig. 3) is an educational resource targeting children with special educa-
tional needs. These children may have an added disability such deafness, blindness
and so on. To help blind users to use this application, the FBLIND philosophy was
applied to develop the blind user interface.

Fig. 2. DABIN application: screenshot

 User-Interface Modelling for Blind Users 795

Fig. 3. Aprender application: screenshot

5 Conclusions

Apart from design for all guidelines, developing dual interfaces involves taking into
account a set of specific requirements: task adequacy, dimensional trade-off, behav-
iour equivalence, semantic loss avoidance and device-independent interface. To do
this, we designed a user interface model for blind people based on HCI models (the
task, domain, dialog, presentation, platform and user models) that takes into account
these requirements. As discussed, all six models have to deal with specific issues in
order to build user interfaces that are effective, efficient and satisfactory for both
sighted and blind users.

To implement the model, we developed a Framework for Blind User Interface De-
velopment (FBLIND) that has proved to be very useful for developing dual user inter-
faces, as it helps developers to focus on important issues, reduces implementation
costs and provides device independency.

References

1. Savidis, A., Stephanidis, C.: The I-GET UIMS for Unified User Interface Implementation.
User Interfaces for All – Concepts, Methods and Tools, 489–524 (2001)

2. Lemon, G., Faulkner, S.: Making Ajax Work with Screen Readers,
http://juicystudio.com/article/making-ajax-work-with-screen-
readers.php

3. Morley, S.: Design and Evaluation of Non-Visual Information Systems for Blind Users.
PhD Dissertation, University of Hertfordshire (1999)

4. Casali, S.P.: A physical skills-based strategy for choosing an appropriate interface method.
In: Edwards, A.D.N. (ed.) Extra-ordinary Human Computer Interaction: Interfaces for
people with disabilities, pp. 315–342. Cambridge University Press, Cambridge (1995)

5. Grammenos, D., Savidis, A., Georgalis, Y.: Dual educational electronic textbooks: the
starlight platform. In: 9th International ACM SIGACCESS Conference on Computers and
Accessibility, pp. 107–114. Arizona (2007)

796 F. Alonso et al.

6. Szekely, P., Luo, P., Neches, R.: Beyond Interface Builders: Model-Based Interface Tools.
In: InterCHI 1993, pp. 383–390. ACM Press, New York (1993)

7. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software
tools. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 3–28 (2000)

8. Menkhaus, G., Fischmeister, S.: Dialog Model Clustering for User Interface Adaptation.
In: 3rd International Conference on Web Engineering (2003)

9. Puerta, A.: The MECANO Project: Comprehensive and Integrated Support for Model-
Based Interface Development. In: Computer-Aided Design of User Interfaces, pp. 19–36
(1996)

10. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Adapting to Mobile Contexts with User-
Interface Modeling. In: Third IEEE Workshop on Mobile Computing Systems and Appli-
cations, pp. 83–92 (2000)

11. Microsoft: Welcome to the Microsoft Speech Application SDK,
http://msdn2.microsoft.com/en-us/library/ms986944.aspx

12. Sun Microsystems: JavaTM Speech API Programmer’s Guide,
http://java.sun.com/products/java-
media/speech/forDevelopers/jsapi-guide/

13. Alonso, F., Fuertes, J.L., González, Á.L., Martínez, L.: A Framework for Blind User Inter-
facing. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006.
LNCS, vol. 4061, pp. 1031–1038. Springer, Heidelberg (2006)

14. AENOR: Computer applications for people with disabilities. Computer accessibility re-
quirements. Software. Spanish Standard UNE 139802:2003 (2003)

15. ISO: Ergonomics of human-system interaction – Guidance on accessibility for human-
computer interfaces. Technical Specification ISO TS 16071 (2003)

16. Fuertes, J.L., González, Á.L., Mariscal, G., Ruiz, C.: Applying a Methodology for Educat-
ing Students with Special Needs: A Case Study. In: International Conference on Systems,
Computing Sciences and Software Engineering (SCS2 2007), Springer, Heidelberg (2008)

	User-Interface Modelling for Blind Users
	Introduction
	Related Work
	User Interface Modelling for Blind People
	A Framework for Blind User Interface Development
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

