34 research outputs found

    Screening and diagnostic breast MRI: how do they impact surgical treatment? Insights from the MIPA study

    Get PDF
    Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18–80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p ≤ 0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p < 0.001) for S-MRI, 1.0 (p = 0.957) for D-MRI, and 1.9 (p < 0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key Points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups

    Preoperative breast MRI positively impacts surgical outcomes of needle biopsy–diagnosed pure DCIS: a patient-matched analysis from the MIPA study

    Get PDF
    Objectives: To investigate the influence of preoperative breast MRI on mastectomy and reoperation rates in patients with pure ductal carcinoma in situ (DCIS). Methods: The MIPA observational study database (7245 patients) was searched for patients aged 18–80 years with pure unilateral DCIS diagnosed at core needle or vacuum-assisted biopsy (CNB/VAB) and planned for primary surgery. Patients who underwent preoperative MRI (MRI group) were matched (1:1) to those who did not receive MRI (noMRI group) according to 8 confounding covariates that drive referral to MRI (age; hormonal status; familial risk; posterior-to-nipple diameter; BI-RADS category; lesion diameter; lesion presentation; surgical planning at conventional imaging). Surgical outcomes were compared between the matched groups with nonparametric statistics after calculating odds ratios (ORs). Results: Of 1005 women with pure unilateral DCIS at CNB/VAB (507 MRI group, 498 noMRI group), 309 remained in each group after matching. First-line mastectomy rate in the MRI group was 20.1% (62/309 patients, OR 2.03) compared to 11.0% in the noMRI group (34/309 patients, p = 0.003). The reoperation rate was 10.0% in the MRI group (31/309, OR for reoperation 0.40) and 22.0% in the noMRI group (68/309, p < 0.001), with a 2.53 OR of avoiding reoperation in the MRI group. The overall mastectomy rate was 23.3% in the MRI group (72/309, OR 1.40) and 17.8% in the noMRI group (55/309, p = 0.111). Conclusions: Compared to those going directly to surgery, patients with pure DCIS at CNB/VAB who underwent preoperative MRI had a higher OR for first-line mastectomy but a substantially lower OR for reoperation. Clinical relevance statement: When confounding factors behind MRI referral are accounted for in the comparison of patients with CNB/VAB-diagnosed pure unilateral DCIS, preoperative MRI yields a reduction of reoperations that is more than twice as high as the increase in overall mastectomies. Key Points: • Confounding factors cause imbalance when investigating the influence of preoperative MRI on surgical outcomes of pure DCIS. • When patient matching is applied to women with pure unilateral DCIS, reoperation rates are significantly reduced in women who underwent preoperative MRI. • The reduction of reoperations brought about by preoperative MRI is more than double the increase in overall mastectomies

    Screening and diagnostic breast MRI:how do they impact surgical treatment? Insights from the MIPA study

    Get PDF
    Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18-80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p&nbsp;≤&nbsp;0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p&nbsp;&lt;&nbsp;0.001) for S-MRI, 1.0 (p&nbsp;=&nbsp;0.957) for D-MRI, and 1.9 (p&nbsp;&lt;&nbsp;0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Magnetic resonance imaging before breast cancer surgery: results of an observational multicenter international prospective analysis (MIPA).

    Get PDF
    Funder: Bayer AGFunder: Università degli Studi di MilanoOBJECTIVES: Preoperative breast magnetic resonance imaging (MRI) can inform surgical planning but might cause overtreatment by increasing the mastectomy rate. The Multicenter International Prospective Analysis (MIPA) study investigated this controversial issue. METHODS: This observational study enrolled women aged 18-80 years with biopsy-proven breast cancer, who underwent MRI in addition to conventional imaging (mammography and/or breast ultrasonography) or conventional imaging alone before surgery as routine practice at 27 centers. Exclusion criteria included planned neoadjuvant therapy, pregnancy, personal history of any cancer, and distant metastases. RESULTS: Of 5896 analyzed patients, 2763 (46.9%) had conventional imaging only (noMRI group), and 3133 (53.1%) underwent MRI that was performed for diagnosis, screening, or unknown purposes in 692/3133 women (22.1%), with preoperative intent in 2441/3133 women (77.9%, MRI group). Patients in the MRI group were younger, had denser breasts, more cancers ≥ 20 mm, and a higher rate of invasive lobular histology than patients who underwent conventional imaging alone (p < 0.001 for all comparisons). Mastectomy was planned based on conventional imaging in 22.4% (MRI group) versus 14.4% (noMRI group) (p < 0.001). The additional planned mastectomy rate in the MRI group was 11.3%. The overall performed first- plus second-line mastectomy rate was 36.3% (MRI group) versus 18.0% (noMRI group) (p < 0.001). In women receiving conserving surgery, MRI group had a significantly lower reoperation rate (8.5% versus 11.7%, p < 0.001). CONCLUSIONS: Clinicians requested breast MRI for women with a higher a priori probability of receiving mastectomy. MRI was associated with 11.3% more mastectomies, and with 3.2% fewer reoperations in the breast conservation subgroup. KEY POINTS: • In 19% of patients of the MIPA study, breast MRI was performed for screening or diagnostic purposes. • The current patient selection to preoperative breast MRI implies an 11% increase in mastectomies, counterbalanced by a 3% reduction of the reoperation rate. • Data from the MIPA study can support discussion in tumor boards when preoperative MRI is under consideration and should be shared with patients to achieve informed decision-making

    Breast cancer detection using double reading of unenhanced MRI including Tl-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study

    No full text
    OBJECTIVE. The purpose of this study was to investigate the diagnostic performance of unenhanced MRI in detecting breast cancer and to assess the impact of double reading. MATERIALS AND METHODS. A total of 116 breasts of 67 women who were 36-89 years old were studied at 1.5 T using an unenhanced protocol including axial Tl-weight-ed gradient-echo, T2-weighted STIR, and echo-planar diffusion-weighted imaging (DWI). Two blinded readers (Rl and R2) independently evaluated unenhanced images using the BI-RADS scale. A combination of pathology and negative follow-up served as the reference standard. McNemar and kappa statistics were used. RESULTS. Per-breast cancer prevalence was 37 of 116 (32%): 30 of 37 (81%) invasive ductal carcinoma, five of 37 (13%) ductal carcinoma in situ, and two of 37 (6%) invasive lobular carcinoma. Per-breast sensitivity of unenhanced MRI was 29 of 37 (78%) forRl, 28 of 37 (76%) for R2, and 29 of 37 (78%) for double reading. Specificity was 71 of 79 (90%) for both Rl and R2 and 69 of 79 (87%) for double reading. Double reading did not provide a significant increase in sensitivity. Interobserver agreement was almost perfect (Cohen \u3ba = 0.873). CONCLUSION. An unenhanced breast MRI protocol composed of Tl-weighted gradient echo, T2-weighted STIR, and echo-planar DWI enabled breast cancer detection with sensitivity of 76-78% and specificity of 90% without a gain in sensitivity from double reading

    MRI of fat necrosis of the breast : the \u201cblack hole\u201d sign at short tau inversion recovery

    No full text
    Objective: To describe MRI features of fat necrosis of the breast. Materials and methods: Twenty-five lesions in 16 patients were retrospectively analyzed. MRI was performed due to equivocal findings at conventional imaging after surgical treatment of cancer (n = 14) or during anticoagulant therapy (n = 1), after focal mastitis treated with ductal resection (n = 1). In the 15 patients with previous surgery MRI was performed after a median interval of 24 months, using short tau inversion recovery (STIR) and contrast-enhanced dynamic T1-weighted sequences. Signal-to-noise ratio (SNR) inside the lesion and surrounding healthy fat was calculated on both STIR and unenhanced T1-weighted images. Maximal lesion diameter was measured on STIR images. All lesions had final clinical and imaging assessment in favor of fat necrosis and negative clinical and imaging follow-up (21-40 months; median 24 months). Results: At STIR sequence, fat necrosis appeared as a "black hole", being markedly hypointense (median SNR = 29) compared with surrounding fat (median SNR = 95) (P < 0.001), while no significant difference was found at unenhanced T1-weighted sequence. No significant correlation with time from treatment was found. Of 25 lesions, 15 showed ring enhancement, with continuous increase (n = 10), plateau (n = 2), or wash-out curve (n = 3). The 11 enhancing lesions in the 8 patients with previous radiation therapy showed an initial enhancement higher than that of the 4 enhancing lesions in the 2 patients who did not, although the difference was not significant (P = 0.104). Conclusion: Fat necrosis of the breast exhibits a "black hole" sign on STIR images, allowing for an easier diagnosis in clinical practice

    The economic burden of multiple myeloma. Definition of a model for forecasting patients’ costs

    No full text
    Background: The aim of this study was to evaluate healthcare costs in a single-centre population of patients with multiple myeloma (MM), in an attempt to develop a model for forecasting costs. Methods: A cohort of 387 MM patients, diagnosed at Policlinico San Matteo (Pavia, Italy), between 2002 and 2014, was analysed grouping patients into those eligible (n=223) or not eligible (n=164) for transplantation. After descriptive statistics, the benchmark model-Ordinary Least Squares-and different variations of the Generalized Linear Model were adopted. Results: The average total cost per patient was around €28,500 for patients not eligible for transplantation and around €87,000 for the eligible ones. The difference in marginal costs for transplant-eligible patients was probably due to higher costs for hospitalisation and the costs of the transplant procedure itself. The analysis highlighted four determinants useful for building a model to forecast expenditure: age, bortezomib use, lenalidomide use, and number of lines of therapies. The two most important determinants of expenditure were use of the novel agents and the total number of lines of therapy, which reflects a higher number of doses and a greater need for accesses to hospital. Conclusion: In conclusion, using a Generalized Linear Model, we identified four determinants in our cohort which were useful for building a model to predict expenditure for MM patients. Although the analysis was performed in a particular setting in a single hospital, the model could be applied to any scenario of patients.
    corecore