315 research outputs found

    Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Get PDF
    During the last several thousand years the semi‐arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17–28 kg m−2 of calcium in the form of carbonates in 1970–1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ∌2.1–7.4 g C m−2 a−1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil

    Calculation of the Green's function from high- and low-density series expansions for disordered transport

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.29.2963We investigate density expansions for the configurationally averaged Green's function for a random walk on a (site) disordered lattice. Two-point Padé summation techniques are used in conjunction with scaling arguments to examine behavior near the percolation density. Recent proposals for the structure of the percolation cluster are discussed in light of the results

    Pressure dependence of diffusion coefficient and orientational relaxation time for acetonitrile and methanol in water: DRISM/mode-coupling study

    Full text link
    We present results of theoretical description and numerical calculation of the dynamics of molecular liquids based on the Reference Interaction Site Model / Mode-Coupling Theory. They include the temperature-pressure(density) dependence of the translational diffusion coefficients and orientational relaxation times for acetonitrile and methanol in water at infinite dilution. Anomalous behavior, i.e. the increase in mobility with density, is observed for the orientational relaxation time of methanol, while acetonitrile does not show any deviations from the usual. This effect is in qualitative agreement with the recent data of MD simulation and with experimental measurements, which tells us that presented theory is a good candidate to explain such kind of anomalies from the microscopical point of view and with the connection to the structure of the molecules.Comment: 10 pages, 2 eps-figures, 3 table

    Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories

    Full text link
    In this paper we study the kinetics of diffusion-limited, pseudo-first-order A + B -> B reactions in situations in which the particles' intrinsic reactivities vary randomly in time. That is, we suppose that the particles are bearing "gates" which interchange randomly and independently of each other between two states - an active state, when the reaction may take place, and a blocked state, when the reaction is completly inhibited. We consider four different models, such that the A particle can be either mobile or immobile, gated or ungated, as well as ungated or gated B particles can be fixed at random positions or move randomly. All models are formulated on a dd-dimensional regular lattice and we suppose that the mobile species perform independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile, ungated target A and a concentration of mobile, gated B particles is solved exactly. For the remaining three models we determine exactly, in form of rigorous lower and upper bounds, the large-N asymptotical behavior of the A particle survival probability. We also realize that for all four models studied here such a probalibity can be interpreted as the moment generating function of some functionals of random walk trajectories, such as, e.g., the number of self-intersections, the number of sites visited exactly a given number of times, "residence time" on a random array of lattice sites and etc. Our results thus apply to the asymptotical behavior of the corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR

    Assessing Gale Crater as an Exploration Zone for the First Human Mission to Mars

    Get PDF
    Mars is the "horizon goal" for human space flight [1]. Towards that endeavor, one must consider several factors in regards to choosing a landing site suitable for a human-rated mission including: entry, descent, and landing (EDL) characteristics, scientific diversity, and possible insitu resources [2]. Selecting any one place is a careful balance of reducing risks and increasing scientific return for the mission

    Lattice theory of trapping reactions with mobile species

    Full text link
    We present a stochastic lattice theory describing the kinetic behavior of trapping reactions A+B→BA + B \to B, in which both the AA and BB particles perform an independent stochastic motion on a regular hypercubic lattice. Upon an encounter of an AA particle with any of the BB particles, AA is annihilated with a finite probability; finite reaction rate is taken into account by introducing a set of two-state random variables - "gates", imposed on each BB particle, such that an open (closed) gate corresponds to a reactive (passive) state. We evaluate here a formal expression describing the time evolution of the AA particle survival probability, which generalizes our previous results. We prove that for quite a general class of random motion of the species involved in the reaction process, for infinite or finite number of traps, and for any time tt, the AA particle survival probability is always larger in case when AA stays immobile, than in situations when it moves.Comment: 12 pages, appearing in PR

    Kinetics of Anchoring of Polymer Chains on Substrates with Chemically Active Sites

    Full text link
    We consider dynamics of an isolated polymer chain with a chemically active end-bead on a 2D solid substrate containing immobile, randomly placed chemically active sites (traps). For a particular situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete anchoring of the whole chain, we calculate the time evolution of the probability Pch(t)P_{ch}(t) that the initially non-anchored chain remains mobile until time tt. We find that for relatively short chains Pch(t)P_{ch}(t) follows at intermediate times a standard-form 2D Smoluchowski-type decay law lnPch(t)∌−t/ln(t)ln P_{ch}(t) \sim - t/ln(t), which crosses over at very large times to the fluctuation-induced dependence lnPch(t)∌−t1/2ln P_{ch}(t) \sim - t^{1/2}, associated with fluctuations in the spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the intermediate-time decay is of the form lnPch(t)∌−t1/2ln P_{ch}(t) \sim - t^{1/2}, which is the Smoluchowski-type law associated with subdiffusive motion of the end-bead, while the long-time fluctuation-induced decay is described by the dependence lnPch(t)∌−t1/4ln P_{ch}(t) \sim - t^{1/4}, stemming out of the interplay between fluctuations in traps distribution and internal relaxations of the chain.Comment: Latex file, 19 pages, one ps figure, to appear in PR

    Diffusion controlled initial recombination

    Full text link
    This work addresses nucleation rates in systems with strong initial recombination. Initial (or `geminate') recombination is a process where a dissociated structure (anion, vortex, kink etc.) recombines with its twin brother (cation, anti-vortex, anti-kink) generated in the same nucleation event. Initial recombination is important if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry. Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions. We discuss also the influence of a weak driving force and show that the transport current is directly determined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate. We emphasize analogies between the single particle problem with initial recombination and the multi-dimensional kink-antikink nucleation problem.Comment: LaTeX, 11 pages, 1 ps-figures Extended versio

    The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument

    Get PDF
    The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign

    Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    Get PDF
    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year‐long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams
    • 

    corecore