85 research outputs found

    Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice.

    Get PDF
    Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies

    Increased Levels of BAFF and APRIL Related to Human Active Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Despite great efforts to improve diagnosis and treatment, tuberculosis (TB) remains a major health problem worldwide, especially in developing countries. Lack of concrete immune markers is still the obstacle to properly evaluate active TB. Therefore, identification of more validated biomarkers and phenotypic signatures is imperative. In particular, T cell-related biomarkers are more significant. METHODOLOGY: To understand the nature of CD4(+) T cell-derived signatures involved in infection and disease development, we examined and analyzed whole genome expression profiles of purified CD4(+) T cells from healthy individuals (HD), two distinct populations with latent infection (with low or high IFN-γ levels, LTB(L)/LTB(H)) and untreated TB patients. Following, we validated the expression profiles of genes in the peripheral CD4(+) T cells from each group and examined secretion levels of distinct cytokines in serum and pleural effusion. PRINCIPAL FINDINGS: Our bio-informatic analyses indicate that the two latent populations and clinical TB patients possess distinct CD4(+) T cell gene expression profiles. Furthermore, The mRNA and protein expression levels of B cell activating factor (BAFF), which belongs to the TNF family, and a proliferation-inducing ligand (APRIL) were markedly up-regulated at the disease stage. In particular, the dramatic enhancement of BAFF and APRIL in the pleural effusion of patients with tuberculosis pleurisy suggests that these proteins may present disease status. In addition, we found that the BAFF/APRIL system was closely related to the Th1 immune response. Our study delineates previously unreported roles of BAFF and APRIL in the development of tuberculosis, and these findings have implications for the diagnosis of the disease. Our study also identifies a number of transcriptional signatures in CD4(+) T cells that have the potential to be utilized as diagnostic and prognostic tools to combat the tuberculosis epidemic

    Promiscuous drugs compared to selective drugs (promiscuity can be a virtue)

    Get PDF
    BACKGROUND: The word selectivity describes a drug's ability to affect a particular cell population in preference to others. As part of the current state of art in the search for new therapeutic agents, the property of selectivity is a mode of action thought to have a high degree of desirability. Consequently there is a growing activity in this area of research. Selectivity is generally a worthy property in a drug because a drug having high selectivity may have a dramatic effect when there is a single agent that can be targeted against the appropriate molecular-driver involved in the pathogenesis of a disease. An example is chronic myeloid leukemia (CML). CML has a specific chromosomal abnormality, the Philadelphia chromosome, that results in a single gene that produces an abnormal protein DISCUSSION: There is a burgeoning understanding of the cellular mechanisms that control the etiology and pathogeneses of diseases. This understanding both enables and motivates the development of drugs that induce a specific action in a selected cell population; i.e., a targeted treatment. Consequently, drugs that can target distinct molecular targets involved in pathologic/pathogenetic processes, or signal-transduction pathways, are being developed. However, in most cases, diseases involve multiple abnormalities. A disease may be associated with more than one dysfunctional protein and these may be out-of-balance with each other. Likewise a drug might strongly target a protein that shares a similar active domain with other proteins. A drug may also target pleiotropic cytokines, or other proteins that have multi-physiological functions. In this way multiple normal cellular pathways can be simultaneously influenced. Long term experience with drugs supposedly designed for only a single target, but which unavoidably involve other functional effects, is uncovering the fact that molecular targeting is not medically flawless. SUMMARY: We contend that an ideal drug may be one whose efficacy is based not on the inhibition of a single target, but rather on the rebalancing of the several proteins or events, that contribute to the etiology, pathogeneses, and progression of diseases, i.e., in effect a promiscuous drug. Ideally, if this could be done at minimum drug concentration, side effects could be minimized. Corollaries to this argument are that the growing fervor for researching truly selective drugs may be imprudent when considering the totality of responses; and that the expensive screening techniques used to discover these, may be both medically and financially inefficient

    Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    Get PDF
    A record fuel hot-spot pressure P[subscript hs] = 56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.United States. Department of Energy (DE-NA0001944

    Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    Get PDF
    BACKGROUND: Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. RESULTS: We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. CONCLUSION: We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR

    Get PDF
    Background: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. Results: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon. Conclusions: Our data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding

    Upregulation of bfl-1 is a potential mechanism of chemoresistance in B-cell chronic lymphocytic leukaemia

    Get PDF
    B-cell chronic lymphocytic leukaemia (B-CLL) is characterised by the progressive accumulation of monoclonal CD5+ B cells. In a previous study, we have analysed the expression profile of apoptosis-regulating genes using a cDNA-based microarray and found overexpression of the antiapoptotic bcl-2 family member, bfl-1, in B-CLL cells with an apoptosis-resistant phenotype. In this study, bfl-1 mRNA levels have been determined by competitive PCR in an extended population of B-CLL patients to characterise its role in disease progression and development of chemoresistance. bfl-1 levels were significantly higher in patients with no response (NR) to last chemotherapy than in patients responding (partial response (PR)) to last chemotherapy (P<0.05) and in patients who had not required treatment (P<0.05). We found no correlation between bfl-1 mRNA levels and disease progression, IGHV mutational status or other clinical parameters. In addition, bfl-1 mRNA levels were inversely correlated with apoptotic response to in vitro fludarabine treatment of B-CLL cells. Specific downregulation of bfl-1 using siRNA induced apoptosis in resistant cells. Our data suggest that bfl-1 contributes to chemoresistance and might be a therapeutic target in B-CLL

    Cryogneic-Target Performance and Implosion Physics Studies on OMEGA

    Get PDF
    Recent progress in direct-drive cryogenic implosions on the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reviewed. Ignition-relevant areal densities of ~200 mg/cm^2 in cryogenic D2 implosions with peak laser-drive intensities of ~5 x 10^14 W/cm^2 were previously reported [T. C. Sangster et al., Phys. Rev. Lett. 100, 185006 (2008)]. The laser intensity is increased to ~10^15 W/cm^2 to demonstrate ignition-relevant implosion velocities of 3–4 x 10^7 cm/ s, providing an understanding of the relevant target physics. Planar-target acceleration experiments show the importance of the nonlocal electron-thermal-transport effects for modeling the laser drive. Nonlocal and hot-electron preheat is observed to stabilize the Rayleigh–Taylor growth at a peak drive intensity of ~10^15 W/cm^2. The shell preheat caused by hot electrons generated by two-plasmon-decay instability was reduced by using Si-doped ablators. The measured compressibility of planar plastic targets driven with high-compression shaped pulses agrees well with one-dimensional simulations at these intensities. Shock mistiming has contributed to compression degradation of recent cryogenic implosions driven with continuous pulses. Multiple-picket (shock-wave) target designs make it possible for a more robust tuning of the shock-wave arrival times. Cryogenic implosions driven with double-picket pulses demonstrate somewhat improved compression performance at a peak drive intensity of ~10^15 W/cm^2

    Bcl-2-regulated cell death signalling in the prevention of autoimmunity

    Get PDF
    Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function
    corecore