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A record fuel hot-spot pressure Phs ¼ 56� 7 Gbar was inferred from x-ray and nuclear diagnostics for
direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam,
30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National
Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition
[A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al.,
Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure.
Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40%
lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-
drive nonuniformity and target-positioning error reduces target performance.

DOI: 10.1103/PhysRevLett.117.025001

The spherical concentric layers of a direct-drive inertial
confinement fusion (ICF) target nominally consist of a
central region of a near-equimolar deuterium and tritium
(DT) vapor surrounded by a cryogenic DT-fuel layer and a
thin, nominally plastic (CH) ablator. The outer surface of
the ablator is uniformly irradiated with multiple laser beams
having a peak overlapped intensity of <1015 watts=cm2.
The resulting laser-ablation process causes the target to
accelerate and implode. As the DT-fuel layer decelerates,
the initial DT vapor and the fuel mass thermally ablated
from the inner surface of the ice layer are compressed and
form a central hot spot, in which fusion reactions occur.
ICF relies on the 3.5-MeV DT-fusion alpha particles
depositing their energy in the hot spot, causing the hot-
spot temperature to rise sharply and a thermonuclear burn
wave to propagate out through the surrounding nearly
degenerate, cold, dense DT fuel, producing significantly
more energy than was used to heat and compress the fuel.
Ignition is predicted to occur when the product of the
temperature and areal density of the hot spot reach a
minimum of 5 keV × 0.3 g=cm2 [1–3].
Currently, the 192-beam, 351-nm, 1.8-MJ National

Ignition Facility (NIF) [4] is configured for indirect-
drive-ignition experiments using laser-driven hohlraums

to accelerate targets via x-ray ablation. Approximately
26 kJ of thermonuclear fusion energy has been recorded
on the NIF using indirect-drive ICF targets [5], where alpha
heating has boosted the fusion yield by a factor of ∼2.5
from that caused by the implosion system alone [6,7]. The
indirect-drive NIF implosions have achieved over 60% of
the Lawson parameter Pτ required for ignition, where P is
the pressure and τ is the confinement time [6]. Here P and τ
are estimated without accounting for alpha heating to assess
the pure hydrodynamic performance. The goal of achieving
laboratory fusion and progress made with direct-drive ICF
over the last decade motivate direct-drive implosions on
NIF [8,9]. Hot-spot formation for spherically symmetric,
direct-drive, DT-layered implosions is studied on the 60-
beam, 30-kJ, 351-nm OMEGA Laser System [10] using
hydrodynamically scaled ignition targets [11]. The radius
of the target and the laser pulse duration scale with the laser
energy as E1=3

laser, and the laser power scales as E2=3
laser.

This Letter demonstrates that a record hot-spot pressure
Phs ¼ 56� 7 Gbar was inferred for direct-drive ICF cryo-
genic, layered deuterium-tritium implosions on OMEGA
using a suite of diagnostics including an x-ray imager
having a 6-μm spatial resolution and 30-ps temporal
resolution [12] and a neutron rate detector with a 40-ps
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impulse response function [13]. This is nearly half of the
ignition-threshold Phs ¼ 120–150 Gbar for direct-drive
ICF scaled to NIF energies. These hydrodynamically scaled
OMEGA implosions achieved an energy-scaled [14,15],
generalized Lawson criterion without alpha heating of 60%
[15], similar to indirect drive [6]. Relative to symmetric,
one-dimensional (1D) simulations, the inferred Phs is
approximately 40% lower. Three-dimensional (3D) simu-
lations suggest that low-mode distortion of the hot spot
seeded by laser-drive nonuniformity and target-positioning
error reduces the neutron rate and the inferred Phs. These
results indicate that higher Phs could be realized by
reducing the sources of the low-mode asymmetry, which
is important for direct-drive ICF research to achieve an
ignition-relevant Phs > 100 Gbar on OMEGA, and the
quest for ignition on NIF.
The Phs and the conversion efficiency of the laser energy

into shell kinetic energy and the hot-spot internal energyEhs
are critical parameters for ignition. The Phs scales [11] as
Phs ∼ P1=3

abl v
10=3
imp =α, where Pabl is the ablation pressure, vimp

is the implosion velocity (maximum mass-averaged shell
velocity), and α is the adiabat, defined as the mass-averaged
ratio of the fuel pressure to the Fermi-degenerate pressure
PFermi in the dense imploding DT shell (α≡ P=PFermi). In
the cross-beam energy transfer (CBET) process [16], non-
absorbed light that is reflected or scattered from its critical
surface or refracted from the underdense plasma acts as an
electromagnetic seed for the stimulated Brillouin scatter of
incoming (incident) light [17]. CBET has been shown to
reduce the target absorption and resultingPabl of direct-drive
ICF targets by asmuch as 40%onOMEGA [16] and 60%on
NIF-scale targets [18]; hydrodynamic instabilities and low-
mode drive asymmetries can reduce Phs and neutron rate,
and the suprathermal electron generation by the two-
plasmon-decay instability and stimulated Raman scattering
[19] can preheat the DT fuel and raise α.
A reformulation of the hot-spot temperature and areal

density needed for ignition as a Phs requirement is Phs >
250 Gbar=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehs=10 kJ

p
. Increasing laser coupling and Ehs

reduces the Phs needed for ignition. Symmetric direct-
drive-ignition target designs on the 1.8-MJ, 0.35-μm NIF
are predicted to couple up to 40 kJ to the hot spot, resulting
in a required pressure of Phs ¼ 120 Gbar; this can be
achieved in an implosion with a convergence ratio (CR) of
22 and an in-flight aspect ratio (IFAR)—defined as the shell
radius divided by its thickness—of 24 when the energy
coupling losses from CBET have been mitigated. Current
OMEGA implosions reach Ehs ¼ 0.44 kJ without any
CBET mitigation. When scaled to 1.8-MJ UV energy on
the NIF, these OMEGA implosions are predicted to reach
Ehs ≈ 30 kJ, increasing the required Phs to 144 Gbar. With
this Ehs, target designs with a CR of 25 and an IFAR of 33
are required to reach the ignition conditions. Because of the
higher Ehs for direct-drive ICF, the ignition-relevant Phs
and CR are lower than the requirements for indirect-drive

ICF: Phs ¼ 350–400 Gbar and CR ¼ 30–40 [5]. An
inferred Phs of 226� 37 Gbar has been reported for NIF
indirect-drive ICF implosions [7].
The hydrodynamically scaled, direct-drive, DT-layered

implosions are designed with the 1D hydrodynamics
code LILAC [20] to result in vimp ¼ 3.6–3.8 × 107 cm=s
α ¼ 2.5–4.5, CR ¼ 15–23, and IFAR ¼ 15–25. LILAC

includes a nonlocal electron thermal conduction model
[21], a CBET model [16], and a new CH first-principles
equation of state [22]. The 1D simulations match the
experimental observables throughout the implosion,
including the scattered laser light energy and spectrum
[23], shell trajectories [24], and neutron bang time [13].
The target and the laser drives used in this study are

presented in Fig. 1. The target has a CD ablator with an
8-μm thickness and an outside radius R ¼ 430 μm. Typical
target-positioning errors are 5–30 μm. The DT-ice thick-
ness was 50� 5 μm. The inner wall of the DT-ice layer has
a 1-μm rms smoothness, and a 49∶51 D:T ratio with a
hydrogen (H) content less than 0.1%. The original vapor
region has a 59∶40 D:T ratio with ∼1% of H because of
isotope fractionation during layering. Most of the targets
were driven with 26 kJ of incident laser energy and had
two-dimensional smoothing by spectral dispersion [25] and
polarization smoothing [26] on the entire pulse. Each of the
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FIG. 1. (a) Schematic of an OMEGA direct-drive DT-layered
target. (b) The measured laser power for single- and triple-picket
drives.
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FIG. 2. (a) The measured time-resolved, x-ray image of the hot
spot recorded at stagnation in the 4–8 keV photon energy range
by a 16-channel Kirkpatrick-Baez microscope. (b) The measured
and fitted intensity profiles taken through the center of the x-ray
image along the dashed line in (a).
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60 beams used a phase plate to generate a super-Gaussian
far-field intensity profile on target with an order n ¼ 4.4�
0.1 and 95% of the laser energy encircled within a diameter
of 825� 5 μm.
Phs was inferred from x-ray and nuclear diagnostics

assuming an isobaric hot spot [27]. The maximum
neutron production rate is expressed as _Nmax ¼
nTnDT2

R
Vhs

dVðhσvi=T2Þ; where nD is the number density
of deuterons, nT is the number density of tritons, T
is the ion temperature, hσvi is the DT fusion reactivity,
and Vhs is the hot-spot volume. Fitting the neutron
rate with a Gaussian function having a temporal width
(FWHM) equal to Δtburn, _Nmax is related to the neutron
yield Y as _Nmax ¼ 2Y

ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=π

p
=Δtburn: Phs is determined

by combining these two expressions for _Nmax assuming
a 50∶50 D:T mixture in the hot spot giving
Phs ≅ f32Y ffiffiffiffiffiffiffiffiffiffiffiffi

ln 2=π
p

=½Δtburn
R
Vhs

dVðhσvi=T2Þ�g1=2. The
radius of the hot spot Rhs is inferred from the image of
the hot spot recorded at stagnation in the 4–8 keV photon
energy range with the 16-channel Kirkpatrick-Baez micro-
scope having 6-μm spatial resolution and 30-ps temporal
resolution [12]. The hot-spot image for shot 77066 is
shown in Fig. 2(a), and the measured and fitted intensity
profiles taken along the dashed line through the center of
the image are presented in Fig. 2(b). The 17% intensity
contour radius R17 of the gated x-ray image is related to the
Rhs based on 1D simulations as Rhs ¼ 1.06R17. Guided by
hydrocode calculations, the ion temperature is assumed to
have the radial dependence as TðrÞ ¼ Tc½1 − ðr=RhsÞ2ð1−
0.153=2Þ�2=3 with a maximum hot-spot temperature of Tc,
which is constrained by the neutron-averaged ion temper-
ature inferred from the neutron time-of-flight (NTOF)
diagnostic hTiin ¼ ½RVhs

dVðhσvi=TÞ=RVhs
dVðhσvi=T2Þ�.

hTiin was inferred along three lines of sight using the

technique outlined in Ref. [28], and the minimum hTiin
value is taken to minimize the effects of residual kinetic
energy in the hot spot [29]. The time of peak neutron
production and Δtburn were recorded with a measurement
uncertainty of �25 ps and �10%, respectively [13].
A Phs ¼ 56� 7 Gbar was inferred for shot 77066

having the following measurements: Y¼4.1�0.2×1013,
hTiin¼3.2� 0.25 keV, R17¼21.5�0.4μm, and Δtburn ¼
67� 5 ps. The compressed areal density ρR is inferred
from the downscattered primary DT neutrons, and was
diagnosed using a NTOF detector (ρRNTOF ¼ 221�
31 mg=cm2) [30] and the magnetic recoil spectrometer
(ρRMRS ¼ 193� 17 mg=cm2) [31] along different lines of
sight. The 1D simulations were postprocessed to predict the
x-ray and nuclear quantities of the hot spot required to infer
the Phs; the 1D calculated Phs at bang time is 90 Gbar. A
comparison of the measured target performance and the 1D
simulations for implosions achieving Phs > 50 Gbar is
presented in Table I. A generalized Lawson criterion
without alpha heating [6,15] χnoα ¼ Pτ=Pτign ¼
ðρRnoαÞ0.61ð0.12Y16

noα=M
stag
DT Þ0.34 was calculated for shot

77066 and energy scaled ðENIF
laser=E

OMEGA
laser Þ0.35 from the

OMEGA laser energy EOMEGA
laser ¼ 26 kJ to the NIF laser

energy ENIF
laser ¼ 1.9 MJ [14,15]. With a measured areal

density of ρRnoα ¼ 0.207 g=cm2 (average of ρRNTOF and
ρRMRS measurements), a measured neutron yield in units of
1016 of Y16

noα ¼ 4.1 × 10−3, and a 1D calculated shocked
DT mass at stagnation in units of mg of Mstag

DT ¼
12.3 × 10−3 mg, the χnoαðENIF

laser=E
OMEGA
laser Þ0.35 ≈ 0.6. As

shown in Table II, similar performance was achieved with
the single-picket and triple-picket laser drives. The direct-
drive implosion performance achieved on OMEGA has
been extrapolated to NIF: A detailed estimate of the fusion
yield amplification due to alpha heating and the total fusion

TABLE I. Compilation of measured Y, hTiin, R17, Δtburn, and ρR for shots with a Phs > 50 Gbar. Quantities in parentheses are 1D
simulated values. First (second) ρR measurement is diagnosed with NTOF (MRS).

Shot Y (×1013) hTiin (keV) R17 (μm) Δtburn (ps) ρR (mg=cm2)

77064 4.2� 0.2 (11.0) 3.3� 0.25 (3.3) 22.0� 0.5 (21.0) 62� 6 (62) 211� 30, 191� 17 (216)
77066 4.1� 0.2 (13.1) 3.2� 0.25 (3.4) 21.5� 0.4 (22.4) 67� 5 (60) 221� 31, 193� 17 (211)
77068 5.3� 0.3 (15.0) 3.6� 0.25 (3.6) 22.0� 0.5 (19.5) 66� 6 (55) 211� 30, 194� 17 (245)
77070 4.0� 0.2 (11.8) 3.3� 0.25 (3.4) 20.4� 0.4 (19.0) 70� 5 (57) 220� 31, 229� 19 (243)

TABLE II. Compilation of the laser drive, α, shocked DT mass at stagnation Mstag
DT , Phsð1DÞ, PhsðexperimentÞ,

PhsðexperimentÞ=Phsð1DÞ, and the energy-scaled χnoα for the shots with a Phs > 50 Gbar.

Shot Laser drive α Mstag
DT (mg) Phsð1DÞ (Gbar) PhsðexperimentÞ (Gbar) PhsðexperimentÞ=Phsð1DÞ χnoαðENIF

laser=E
OMEGA
laser Þ0.35

77064 triple picket 3.7 0.0116 91 54� 7 59% 0.59
77066 triple picket 3.2 0.0123 90 56� 7 62% 0.58
77068 single picket 3.2 0.0112 119 56� 7 47% 0.64
77070 single picket 3.6 0.0107 110 56� 7 51% 0.63
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yield are presented in Ref. [15] for a NIF direct-drive
ignition target.
Three-dimensional hydrodynamics simulations from the

code ASTER [32] are used as a guide to determine possible
sources of target performance degradation. When laser
irradiation nonuniformity on target caused by 15% rms
beam-to-beam laser power imbalance, 20-μm target offset,
and 10-μm rms beam-to-beam laser-beam mispointing are
included in the ASTER simulations, the low-mode distortion
of the hot spot is predicted to rupture the shell before peak
compression is reached [see Figs. 3(a) and 3(b)]. This
reduces the compression leading to a lower neutron
production rate and lower Phs. The effects of the 3D
perturbations on the neutron rate can be seen in
Fig. 3(c) by comparing the 3D curve with the 1D curve,
corresponding to a spherically symmetric 3D implosion.
The initial slope of the neutron rate is the similar for both
cases until the 3D case deviates from the 1D case prior to
the peak for a spherically symmetric implosion (1D bang
time). The 3D perturbations cause the peak neutron rate to

occur approximately 20 ps earlier, with a peak neutron rate
that is lower than the 1D case. However, the simulated
burnwidth (FWHM) is similar for 1D and 3D cases even
though the neutron rate for the 3D case deviates from the
1D case [see Fig. 3(c)]. The ratio of the yield for the 3D
simulation to the 1D simulation is 20% and the ratio of the
Phs for the 3D simulation to the 1D simulation is 50%. The
hTiin for the 3D and 1D simulations are similar at 2.90 keV
and 3.04 keV, respectively. As can be seen in Table I, hTiin,
R17, and Δtburn are close to the 1D simulated values, while
the measured Y is 31%–38% of the 1D prediction, and the
inferred Phs is about half of the 1D simulated value (see
Table II). These observations are consistent with the trends
from the symmetric and perturbed 3D simulations (see
Fig. 3) showing the low-mode distortion of the hot spot
rupturing the shell around stagnation and limiting the
compression and density of the hot spot.
A comparison of the measured neutron rate with the 1D

simulation is presented in Figs. 4(a) and 4(b) for α ∼ 3.7
implosions having 804-μm and 1017-μm initial target
outside diameters, respectively. The larger target is driven
with 29 kJ of laser energy. The timing of the neutron rate is
adjusted within the timing error (25 ps) of the neutron
temporal diagnostic to match the slope of the rising edge of
the neutron rate with the 1D simulation. The deviation of
the measured neutron rate from the 1D simulated neutron
rate is more pronounced for the larger target than the
smaller one (see Fig. 4). A comparison of the measured and
1D simulated neutron rates for the smaller and larger targets
shows the initial measured slope of the neutron rate is more
like the 1D simulation for the smaller target and the ratio of
the measured peak neutron rate to the 1D value is twice as
high for the smaller target (0.36 vs 0.15). The low-mode
distortion of the hot spot is expected to be more pronounced
for the larger targets, since the calculated low-mode drive
nonuniformity is higher for the larger target due to less
beam overlap. The larger downward excursion of the
measured neutron rate from the simulated one for the
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larger target compared to the smaller target is attributed to
the higher low-mode drive nonuniformity.
When the earlier peaking of the measured neutron rate

relative to the 1D simulated rate is taken into account the
1-D simulations for implosions with a CR < 17 and
α > 3.5 are in closer agreement with the experimental values
of Phs and the compressed areal density. The ratio of the Phs
inferred from the experiment with the 1D simulated Phs
averaged over the measured neutron rate is compared to the
1D convergence ratio in Fig. 5(a), and shown to reach 90% of
the 1D value for CR < 17. This behavior is attributed to a
higher level of low-modedistortion of the hot spot forα > 3.5
implosions having CR > 17. The measured areal density
compared to the 1D simulated areal density averaged over the
measured neutron rate is presented in Fig. 5(b), and is shown
to reach the 1D value for α > 3.5. The degraded performance
for the lower-adiabat (α < 3.5) implosions is attributed to
high-mode perturbations caused by laser imprint and mass
modulations in the target.
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