1,764 research outputs found

    Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement?

    Get PDF
    We demonstrate that the Sommerfeld correction to CDM annihilations can be appreciable if even a small component of the dark matter is extremely cold. Subhalo substructure provides such a possibility given that the smallest clumps are relatively cold and contain even colder substructure due to incomplete phase space mixing. Leptonic channels can be enhanced for plausible models and the solar neighbourhood boost required to account for PAMELA/ATIC data is plausibly obtained, especially in the case of a few TeV mass neutralino for which the Sommerfeld-corrected boost is found to be ∼104−105.\sim10^4-10^5. Saturation of the Sommerfeld effect is shown to occur below β∼10−4,\beta\sim 10^{-4}, thereby constraining the range of contributing substructures to be above ∼105M⊙.\sim 10^5\rm M_\odot. We find that the associated diffuse gamma ray signal from annihilations would exceed EGRET constraints unless the channels annihilating to heavy quarks or to gauge bosons are suppressed. The lepton channel gamma rays are potentially detectable by the FERMI satellite, not from the inner galaxy where substructures are tidally disrupted, but rather as a quasi-isotropic background from the outer halo, unless the outer substructures are much less concentrated than the inner substructures and/or the CDM density profile out to the virial radius steepens significantly.Comment: 8 pages, 5 figures. References added. Replaced to match published versio

    The Morphology-Density-Relation: Impact on the Satellite Fraction

    Full text link
    In the past years several authors studied the abundance of satellites around galaxies in order to better estimate the halo masses of host galaxies. To investigate this connection, we analyze galaxies with Mstar≥ 1010 M⊙M_\mathrm{star}\geq\,10^{10}\,M_{\odot} from the hydrodynamical cosmological simulation Magneticum. We find that the satellite fraction of centrals is independent of their morphology. With the exception of very massive galaxies at low redshift, our results do not support the assumption that the dark matter (DM) haloes of spheroidal galaxies are significantly more massive than those of disc galaxies at fixed MstarM_\mathrm{star}. We show that the density-morphology-relation starts to build up at z∼2z\sim2 and is independent of the star-formation properties of central galaxies. We conclude that environmental quenching is more important for satellites than for centrals. Our simulations indicate that conformity is already in place at z=2z=2, where formation redshift and current star-formation rate (SFR) of central and satellite galaxies correlate. Centrals with low SFRs have formed earlier (at fixed MstarM_\mathrm{star}) while centrals with high SFR formed later, with typical formation redshifts well in agreement with observations. However, we confirm the recent observations that the apparent number of satellites of spheroidal galaxies is significantly larger than for disc galaxies. This difference completely originates from the inclusion of companion galaxies, i.e. galaxies that do not sit in the potential minimum of a DM halo. Thus, due to the density-morphological-relation the number of satellites is not a good tracer for the halo mass, unless samples are restricted to the central galaxies of DM haloes.Comment: 17 pages, submitted to MNRAS, www.magneticum.or

    Indirect Signals from Dark Matter in Split Supersymmetry

    Full text link
    We study the possibilities for the indirect detection of dark matter in Split Supersymmetry from gamma-rays, positrons, and antiprotons. The most promising signal is the gamma-ray line, which may be observable at the next generation of detectors. For certain halo profiles and a high mass neutralino, the line can even be visible in current experiments. The continuous gamma-ray signal may be observable, if there is a central spike in the galactic halo density. The signals are found to be similar to those in MSSM models. These indirect signals complement other experiments, being most easily observable for regions of parameter space, such as heavy wino and higgsino dominated neutralinos, which are least accessible for direct detection and accelerator searches.Comment: 10 pages, 5 figures; experimental sensitivities added to figure 2, revised version to appear in Phys. Rev.

    Photometric Variability Among the Brightest Asymptotic Giant Branch Stars Near the Center of M32

    Full text link
    Deep K' images with 0.1 arcsec angular resolution, obtained with ALTAIR+NIRI on Gemini North, are used to investigate photometric variablity among the brightest asymptotic giant branch (AGB) stars in the central regions of M32. Based on a comparison with brightnesses obtained from the K-band data discussed by Davidge et al. (2000, ApJ, 545, L89), it is concluded that (1) at least 60% of bright AGB stars near the center of M32 are photometrically variable, and (2) the amplitudes of the light variations are similar to those of long period variables in the Galactic bulge. We do not find evidence for a population of large amplitude variables, like those detected by IRAS in the Galactic bulge. The technique discussed here may prove useful for conducting an initial reconnaisance of photometric variability among AGB stars in spheroids in the Virgo cluster and beyond, where the required long exposure times may restrict observations to only a few epochs.Comment: 8 pages of text, 3 postscript figures. ApJ (letters) in pres

    Triggered Star Formation in the Environment of Young Massive Stars

    Get PDF
    Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this work we investigate the effect of ionising radiation of massive stars on the ambient interstellar medium (ISM): In particular we want to examine whether the UV-radiation of O-type stars can lead to the observed pillar-like structures and can trigger star formation. We developed a new implementation, based on a parallel Smooth Particle Hydrodynamics code (called IVINE), that allows an efficient treatment of the effect of ionising radiation from massive stars on their turbulent gaseous environment. Here we present first results at very high resolution. We show that ionising radiation can trigger the collapse of an otherwise stable molecular cloud. The arising structures resemble observed structures (e.g. the pillars of creation in the Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of gravitation we find small regions that can be identified as formation places of individual stars. We conclude that ionising radiation from massive stars alone can trigger substantial star formation in molecular clouds.Comment: 4 pages, 2 figures. To appear in: "Triggered Star Formation in a Turbulent ISM", IAU Symposium 237, Prague, Czech Republic, August 2006; eds. B.G.Elmegreen & J. Palou

    Cloud Dispersal in Turbulent Flows

    Get PDF
    Cold clouds embedded in warm media are very common objects in astrophysics. Their disruption timescale depends strongly on the dynamical configuration. We discuss the evolution of an initially homogeneous cold cloud embedded in warm turbulent gas. Within a couple of dynamical timescales, the filling factor of the cold gas within the original cloud radius drops below 50%. Turbulent diffusivities estimated from the time evolution of radial filling factor profiles are not constant with time. Cold and warm gas are bodily transported by turbulence and mixed. This is only mildly indicated by column density maps. The radiation field within the cloud, however, increases by several orders of magnitudes due to the mixing, with possible consequences for cloud chemistry and evolution within a few dynamical timescales.Comment: 11 pages, 12 figures, accepted by MNRA

    A light-front description of electromagnetic form factors for J≤3/2J \leq {3/2} hadrons

    Get PDF
    A review of the hadron electromagnetic form factors obtained in a light-front constituent quark model, based on the eigenfunctions of a mass operator, is presented. The relevance of different components in the q-q interaction for the description of hadron experimental form factors is analysed.Comment: 6 pages, Latex, 3 Postscript figures included. Proceedings of "Nucleon 99", Frascati, June 1999. To appear in Nucl. Phys.

    Magnetized Non-linear Thin Shell Instability: Numerical Studies in 2D

    Get PDF
    We revisit the analysis of the Non-linear Thin Shell Instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI -- namely transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfv\'en speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernovae shells to colliding stellar winds.Comment: 12 pages, 17 figures, some of them at low resolution. Submitted to ApJ, comments welcom

    The Validity of the Adiabatic Contraction Approximation for Dark Matter Halos

    Full text link
    We use high resolution numerical simulations to investigate the adiabatic contraction of dark matter halos with a Hernquist density profile. We test the response of the halos to the growth of additional axisymmetric disk potentials with various central concentrations and the spherically symmetric potential of a softened point mass. Adding the potentials on timescales that are long compared to the dynamical time scale of the halo, the contracted halos have density profiles that are in excellent agreement with analytical predictions based on the conservation of the adiabatic invariant M(r)rM(r)r. This is surprising as this quantity is strictly conserved only for particles on circular orbits and in spherically symmetric potentials. If the same potentials are added on timescales that are short compared to the dynamical timescale, the result depends strongly on the adopted potential. The adiabatic approximation still works for disk potentials. It does, however, fail for the central potential.Comment: 7 pages, 3 figures, 1 table. Added reference. Accepted for publication in ApJ

    Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies

    Full text link
    The luminosity dependence of kinematical and isophotal properties of elliptical galaxies is investigated using numerical simulations of galaxy merging, combined with semi-analytical models of hierarchical structure formation. Mergers of spiral galaxies as the only formation mechanism for elliptical galaxies can neither reproduce the kinematical and photometric properties of very massive elliptical galaxies nor the change from rotationally flattened disky to anisotropic boxy systems with increasing luminosity. We present numerical simulations showing that binary mergers of early-type galaxies open an additional channel for the formation of anisotropic, slowly rotating and boxy ellipticals. Including this channel in a semi-analytical model we can successfully reproduce the observed trend that more luminous giant ellipticals are more boxy and less flattened by rotation. This trend can be strengthened by suppressing residual gas infall and star formation for galaxies with stellar bulge masses M∗≥3×1010M⊙M_* \geq 3 \times 10^{10} M_{\odot}. Hence we propose that mergers of early-type galaxies play an important role for the assembly of massive elliptical galaxies.Comment: accepted for publication by ApJ
    • …
    corecore