Recent observations with the Spitzer Space Telescope show clear evidence that
star formation takes place in the surrounding of young massive O-type stars,
which are shaping their environment due to their powerful radiation and stellar
winds. In this work we investigate the effect of ionising radiation of massive
stars on the ambient interstellar medium (ISM): In particular we want to
examine whether the UV-radiation of O-type stars can lead to the observed
pillar-like structures and can trigger star formation. We developed a new
implementation, based on a parallel Smooth Particle Hydrodynamics code (called
IVINE), that allows an efficient treatment of the effect of ionising radiation
from massive stars on their turbulent gaseous environment. Here we present
first results at very high resolution. We show that ionising radiation can
trigger the collapse of an otherwise stable molecular cloud. The arising
structures resemble observed structures (e.g. the pillars of creation in the
Eagle Nebula (M16) or the Horsehead Nebula B33). Including the effect of
gravitation we find small regions that can be identified as formation places of
individual stars. We conclude that ionising radiation from massive stars alone
can trigger substantial star formation in molecular clouds.Comment: 4 pages, 2 figures. To appear in: "Triggered Star Formation in a
Turbulent ISM", IAU Symposium 237, Prague, Czech Republic, August 2006; eds.
B.G.Elmegreen & J. Palou