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Can the WIMP annihilation boost factor be boosted by the Sommerfeld

enhancement?
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We demonstrate that the Sommerfeld correction to cold dark matter (CDM) annihilations can be
appreciable if even a small component of the dark matter is extremely cold. Subhalo substructure
provides such a possibility given that the smallest clumps are relatively cold and contain even
colder substructure due to incomplete phase space mixing. Leptonic channels can be enhanced for
plausible models and the solar neighbourhood boost required to account for PAMELA/ATIC data
is plausibly obtained, especially in the case of a few TeV mass neutralino for which the Sommerfeld-
corrected boost is found to be ∼ 104

− 105. Saturation of the Sommerfeld effect is shown to occur
below β ∼ 10−4, thereby making this result largely independent on the presence of substructures
below ∼ 105M⊙. We find that the associated diffuse gamma ray signal from annihilations would
exceed EGRET constraints unless the channels annihilating to heavy quarks or to gauge bosons
are suppressed. The lepton channel gamma rays are potentially detectable by the FERMI satellite,
not from the inner galaxy where substructures are tidally disrupted, but rather as a quasi-isotropic
background from the outer halo, unless the outer substructures are much less concentrated than the
inner substructures and/or the CDM density profile out to the virial radius steepens significantly.

I. INTRODUCTION

The motivation for studying dark matter annihilation
signatures (see e.g. [1]) has received considerable re-
cent attention following reports of a 100 GeV excess
in the PAMELA data on the ratio of the fluxes of
cosmic ray positrons to electrons [2]. In the absence
of any compelling astrophysical explanation, the sig-
nature is reminiscent of the original prediction of a
unique dark matter annihilation signal [3], although
there are several problems that demand attention be-
fore any definitive statements can be made. By far the
most serious of these is the required annihilation boost
factor. The remaining difficulties with a dark matter
interpretation, including most notably the gamma ray
signals from the Galactic Centre and the inferred lep-
tonic branching ratio, are, as we argue below, plausi-
bly circumvented or at least alleviated. Recent data
from the ATIC balloon experiment provides evidence
for a cut-off in the positron flux near 500 GeV that
supports a Kaluza-Klein-like candidate for the anni-
hilating particle [4] or a neutralino with incorporation
of suitable radiative corrections [5].

In a pioneering paper, it was noted [6] that the annihi-
lation signal can be boosted by a combination of coan-
nihilations and Sommerfeld corrrection. We remark
first that the inclusion of coannihilations to boost the
annihilation cross-section modifies the relic density,
and opens the 1-10 TeV neutralino mass window to
the observed (WMAP5-normalised) dark matter den-
sity. As found by [7], the outstanding problem now be-
comes that of normalisation. A boost factor of around
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100 is required to explain the HEAT data in the con-
text of a 100 GeV neutralino. The flux is suppressed
by between one and two powers of neutralino mass,
and the problem becomes far more severe with the 1-
10 TeV neutralino required by the PAMELA/ATIC
data [8], a boost of 104 or more being required. These
latter authors included a Sommerfeld correction ap-
propriate to our β ≡ v/c = 0.001 dark halo and in-
corporated channel-dependent boost factors to fit the
data, but the required boosts still fell short of plausi-
ble values by at least an order of magnitude.

Here we propose a solution to the boost problem via
Sommerfeld correction in the presence of a model of
substructure that incorporates a plausible phase space
structure for cold dark matter (CDM). We reassess
the difficulty with the leptonic branching ratio and
show that it is not insurmountable for supersymmet-
ric candidates. Finally, we evaluate the possibility of
independent confirmation via photon channels.

Substructure survival means that as much as 10% of
the dark matter is at much lower β. This is likely in
the solar neighbourhood and beyond, but not in the
inner galaxy where clump destruction is prevalent due
to tidal interactions. Possible annihilation signatures
from the innermost galaxy such as the WMAP haze
of synchrotron emission and the EGRET flux of dif-
fuse gamma rays are likely to be much less affected
by clumpy substructure than the positron flux in the
solar neighbourhood. We show in the following sec-
tion that incorporation of the Sommerfeld correction
means that clumps dominate the annihilation signal,
to the extent that the initial clumpiness of the dark
halo survives.
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FIG. 1: Ladder diagram giving rise to the Sommerfeld
enhancement for χχ → XX annihilation, via the exchange
of gauge bosons.

II. THE SOMMERFELD ENHANCEMENT

Dark matter annihilation cross sections in the low-
velocity regime can be enhanced through the so-called
“Sommerfeld effect” [9, 10, 11, 12, 13, 14, 15]. This
non-relativistic quantum effect arises because, when
the particles interact through some kind of force, their
wave function is distorted by the presence of a po-
tential if their kinetic energy is low enough. In the
language of quantum field theory, this correspond to
the contribution of “ladder” Feynman diagrams like
the one shown in Fig. 1 in which the force carrier is
exchanged many times before the annihilation finally
occurs. This gives rise to (non-perturbative) correc-
tions to the cross section for the process under con-
sideration. The actual annihilation cross section times
velocity will then be:

σv = S (σv)
0

(1)

where (σv)
0

is the tree level cross section times veloc-
ity, and in the following we will refer to the factor S
as the “Sommerfeld boost” or “Sommerfeld enhance-
ment” 1.

In this section we will study this process in a semi-
quantitative way using a simple case, namely that of
a particle interacting through a Yukawa potential. We
consider a dark matter particle of mass m. Let ψ(r)
be the reduced two-body wave function for the s-wave
annihilation; in the non-relativistic limit, it will obey
the radial Schrödinger equation:

1

m

d2ψ(r)

dr2
− V (r)ψ(r) = −mβ2ψ(r), (2)

where β is the velocity of the particle and V (r) =
−α

r e
−mVr is an attractive Yukawa potential mediated

by a boson of mass mV.

The Sommerfeld enhancement S can be calculated by
solving the Schrödinger equation with the boundary
condition dψ/dr = imβψ as r → ∞. Eq. (2) can be
easily solved numerically. It is however useful to con-
sider some particular limits in order to gain some qual-
itative insight into the dependence of the Sommerfeld

1 In the case of repulsive forces, the Sommerfeld “enhance-

ment” can actually be S < 1, although we will not consider

this possibility here.

enhancement on particle mass and velocity. First of
all, we note that for mV → 0, the potential becomes
Coulomb-like. In this case the Schrödinger equation
can be solved analytically; the resulting Sommerfeld
enhancement is:

S =
πα

β
(1 − e−πα/β)−1. (3)

For very small velocities (β → 0), the boost S ≃
πα/β: this is why the Sommerfeld enhancement is
often referred as a 1/v enhancement. On the other
hand, S → 1 when α/β → 0, as one would expect.

It should however be noted that the 1/v behaviour
breaks down at very small velocities. The reason is
that the condition for neglecting the Yukawa part of
the potential is that the kinetic energy of the collision
should be much larger than the boson mass mV times
the coupling constant α, i.e., mβ2 ≫ αmV, and this
condition will not be fulfilled for very small values of
β. This is also evident if we expand the potential in
powers of x = mVr; then, neglecting terms of order x2

or smaller, the Schrödinger equation can be written as
(the prime denotes the derivative with respect to x):

ψ′′ +
α

ε

ψ

x
=

(

−β
2

ε2
+
α

ε

)

ψ, (4)

having defined ε = mV/m. The Coulomb case is
recovered for β2 ≫ αε, or exactly the condition on
the kinetic energy stated above. It is useful to de-
fine β∗ ≡

√

αmV/m such that β ≫ β∗ is the velocity
regime where the Coulomb approximation for the po-
tential is valid.

Another simple, classical interpretation of this result
is the following. The range of the Yukawa interaction
is given by R ≃ m−1

V
. Then the crossing time scale is

given by tcross ≃ R/v ≃ 1/βmV. On the other hand,
the dynamical time scale associated to the potential
is tdyn ≃

√

R3m/α ≃
√

m/αm3
V
. Then the condition

β ≫ β∗ is equivalent to tcross ≪ tdyn, i.e., the crossing
time should be much smaller than the dynamical time-
scale. Finally, we note that since in the Coulomb case
S ∼ 1/β for α≫ β, the region where the Sommerfeld
enhancement actually has a 1/v behaviour is β∗ ≪
β ≪ α. It is interesting to notice that this region
does not exist at all when m <∼ mV/α.

The other interesting regime to examine is β ≪ β∗.
Following the discussion above, this corresponds to
the potential energy dominating over the kinetic term.
Referring again to the form (4) for x ≪ 1 of the
Schrödinger equation, this becomes:

ψ′′ +
α

ε

ψ

x
=
α

ε
ψ. (5)

The positiveness of the right-hand side of the equation
points to the existence of bound states. In fact, this
equation has the same form as the one describing the
hydrogen atom. Then bound states exist when

√

α/ε
is an even integer, i.e. when:

m = 4mVn
2/α, n = 1, 2, . . . (6)



From this result, we expect that the Sommerfeld en-
hancement will exhibit a series of resonances for spe-
cific values of the particle mass spaced in a 1 : 4 : 9 : ...
fashion. The behaviour of the cross section close to
the resonances can be better understood by approx-
imating the electroweak potential by a well poten-
tial, for example: V (r) = −αmVθ(R − r), where
R = m−1

V
is the range of the Yukawa interaction, and

the normalization is chosen so that the well poten-
tial roughly matches the original Yukawa potential at
r = R. The external solution satisfying the bound-
ary conditions at infinity is simply an incoming plane
wave, ψout(r) ∝ eikoutr, with kout = mβ. The inter-
nal solution is: ψin(r) = Aeikinr + Be−ikinr, where

kin =
√

k2
out + αmmV ≃ √

αmmV (the last approxi-
mate equality holds because β ≪ β∗). The coefficients
A and B are as usual obtained by matching the wave
function and its first derivative at r = R; then the
enhancement is found to be:

S =

[

cos2 kinR+
k2

out

k2
in

sin2 kinR

]−1

. (7)

When cos kinR = 0, i.e., when
√

αm/mV = (2n +
1)π/2, the enhancement assumes the value k2

in/k
2
out ≃

β∗2/β2 ≫ 1. This is however cut off by the finite
width of the state.

In summary, the qualitative features that we expect
to observe are
i) at large velocities (β ≫ α) there is no enhancement,
S ≃ 1;
ii) in the intermediate range β∗ ≪ β ≪ α, the en-
hancement goes like 1/v: S ≃ πα/β, this value being
independent of the particle mass;
iii) at small velocities (β ≪ β∗), a series of resonances
appear, due to the presence of bound states. Close
to the resonances, S ≃ (β∗/β)2. In this regime, the
enhancement strongly depends on the particle mass,
because it is this that determines whether we are close
to a resonance or not. Similar results have been inde-
pendently obtained in Ref. [16].

We show the result of the numerical integration of
Eq. (2) in Figure 2, where we plot the enhancement
S as a function of the particle mass m, for different
values of β. We choose specific values of the boson
mass mV = 90 GeV and of the gauge coupling α =
α2 ≃ 1/30. These values correspond to a particle
interacting through the exchange of a Z boson.

We note however that, as can be seen by the form
of the equation, the enhancement depends on the bo-
son mass only through the combination ε = mV/m,
so that a different boson mass would be equivalent
to rescaling the abscissa in the plot. Moreover, the
evolution of the wave function only depends on the
two quantities α/ε and β/ε, so that a change α→ α′

in the gauge coupling would be equivalent to: β →
β′ = α′

α β, ε → ε′ = α′

α ε. This shows that Fig. 2 does
indeed contain all the relevant information on the be-
haviour of the enhancement S.

We see that the results of the numerical evaluation
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FIG. 2: Sommerfeld enhancement S as a function of
the dark matter particle mass m, for different values of
the particle velocity. Going from bottom to top β =
10−1, 10−2, 10−3, 10−4, 10−5.

agree with our qualitative analysis above. When β =
10−1 (bottom curve), we are in the β > α ≃ 3× 10−2

regime and there is basically no enhancement. The
next curve β = 10−2 is representative of the β >∼ β∗

regime, at least for m larger than a few TeV. The en-
hancement is constant with the particle mass and its
value agrees well with the expected value πα/β ≃ 10.
The drop of the enhancement in the mass region be-
low ∼ 3 TeV is due to the fact that here β <∼ β∗,
and that there are no resonances for this value of the
mass. Decreasing β again (top three curves, corre-
sponding to β = 10−3, 10−4, 10−5 from bottom to
top) we observe the appearance of resonance peaks.
The first peak occurs for m = m = 4.5 TeV, so that
expression (6) based on the analogy with the hydro-
gen atom overestimates the peak position by a factor
2. However, the spacing between the peaks is as ex-
pected, going like n2, as the next peaks occur roughly
at m = 4, 9, 16m. The height of the first peak agrees
fairly well with its expected value of (β∗/β)2. The
other peaks are damped; this is particularly evident
for β = 10−3, and in this case it is due to the fact that
β∗ decreases as m increases, so that for m ∼ 100 TeV
we return to the non-resonant, 1/β behaviour, and the
enhancement takes the constant value πα/β ≃ 100.

Complementary information can be extracted from
the analysis of the upper panel of Fig. 3, where we
plot the Sommerfeld enhancement as a function of β,
for different values of the particle mass. Far from
the resonances, the enhancement factor initially grows
as 1/β and then saturates to some constant value.
This constant value can be estimated by solving the
Schrödinger equation with β = 0. We find that a
reasonable order of magnitude estimate is given by
Smax ∼ 6α/ε; the corresponding value of β ∼ 0.5ε.
The 1/β behaviour holds down to smaller velocities
for larger particle masses, leading to larger enhance-
ment factors. However, when the particle mass is close
to a resonance, S initially grows like 1/β but at some
point the 1/β2 behaviour ”turns on”, leading to very
large values of the boost factor, until this also satu-
rates to some constant value.
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FIG. 3: Top panel: Sommerfeld enhancement S as a
function of the particle velocity β for different values
of the dark matter mass. From bottom to top: m =
2, 10, 100, 4.5 TeV, the last value corresponding to the
first resonance in Fig. 2. The black dashed line shows
the 1/v behaviour that is expected in the intermediate
velocity range (see text for discussion). Bottom panel:
Sommerefeld enhancement S as a function of the relative
distance from the first resonance shown in Fig. 2, occur-
ring at m ≃ 4.5 TeV, for different values of β. From top
to bottom: β = 10−4, 10−3, 10−2.

It is clear from the discussion until this point that the
best hope for obtaining a large enhancement comes
from the possibility of the dark matter mass lying
close to a resonance; for the choice of parameter used
above this would mean m ≃ m ≃ 4.5 TeV. However,
one could be interested in knowing how close the mass
should be to the center of the resonance in order to ob-
tain a sizeable boost in the cross-section. In order to
understand this, we show in Fig. 3 the enhancement
as a function of µ ≡ |m−m|/m, i.e., of the fractional
shift from the center of the resonance. Clearly, for
β ≤ 10−3, a boost factor of >∼ 100 can be obtained
for µ <∼ 0.2, i.e., for deviations of up to 20% from m,
corresponding to the range between 3.5 and 5.5 TeV.
This is further reduced to the 4 to 5 TeV range if one
requires S >∼ 103.

III. THE LEPTONIC BRANCHING RATIO

The relevance of the Sommerfeld enhancement for
the annihilation of supersymmetric particles was first

pointed out in Refs [10, 11], in the context of the
minimal supersymmetric standard model where the
neutralino is the lightest supersymmetric particle. A
wino-like or higgsino-like neutralino would interact
with the W and Z gauge bosons due to its SU(2)L

nonsinglet nature. In particular, the wino W̃ 0 is the
neutral component of a SU(2)L triplet , while the hig-

gsinos (H̃0
1 , H̃

0
2 ) are the neutral components of two

SU(2)L doublets. The mass (quasi-) degeneracy be-
tween the neutralino and the other components of
the multiplet leads to transitions between them, me-
diated by the exchange of weak gauge bosons; this
gives rise to a Sommerfeld enhancement at small ve-
locities. On the other hand, the bino-like neutralino
being a SU(2) singlet, would not experience any Som-
merfeld enhancement, unless a mass degeneracy with
some other particle is introduced into the model.

The formalism needed to compute the enhancement
when mixing among states is present is slightly more
complicated than the one described above, but the
general strategy is the same. As shown in the pa-
per by Hisano et al. [11] through direct numerical
integration of the Schrödinger equation, the qualita-
tive results of the previous section still hold: for dark
matter masses >∼ 1 TeV, a series of resonances appear,
and the annihilation cross section can be boosted by
several order of magnitude.

An interesting feature of this “multi-state” Sommer-
feld effect is the possibility of boosting the cross sec-
tion for some annihilation channels more than oth-
ers. This happens when one particular annihilation
channel is very suppressed (or even forbidden) for a
given two-particle initial state, but not for other ini-
tial states. This can be seen as follows. The general
form for the total annihilation cross section after the
enhancement has been taken into account is

σv = N
∑

ij

Γijdi(v)d
∗
j (v), (8)

where N is a multiplicity factor, Γij is the absorptive
part of the action, responsible for the annihilation, the
di are coefficients describing the Sommerfeld enhance-
ment, and the indices i, j run over the possible initial
two-particle states. Let us consider for definiteness
the case of the wino-like neutralino: the possible ini-
tial states are {χ0χ0, χ+χ−}. The neutralino and the
chargino are assumed to be quasi-degenerate, since
they are all members of the same triplet. What we
will say can anyway be easily generalized to the case of
the higgsino-like neutralino. Let us also focus on two
particular annihilation channels: the W+W− chan-
nel and the e+e− channel. It can be assumed that,
close to a resonance, d1 ∼ d2. This can be inferred
for example using the square well approximation as
in Ref. [11], where it is found that, in the limit of

small velocity, d1 ≃
√

2(cos
√

2pc)
−1 −

√
2(cosh pc)

−1

and d2 ≃ (cos
√

2pc)
−1 + 2(cosh pc)

−1, where pc ≡
√

2α2m/mW . The elements of the Γ matrix for the
annihilation into a pair of W bosons are ∼ α2

2/m
2
χ,

so that we can write the following order of magnitude
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FIG. 4: Diagram describing the annihilation of two neu-
tralinos into a charged lepton pair, circumventing helicity
suppression.

estimate:

σv(χ0χ0 →W+W−) ∼ |d1|2
α2

2

m2
χ

. (9)

On the other hand, the non-enhanced neutralino an-
nihilation cross section to an electron-positron pair
Γ22 ∼ α2

2m
2
e/m

4
χ, so that it is suppressed by a fac-

tor (me/mχ)2 with respect to the gauge boson chan-
nel. This is a well-known general feature of neutralino
annihilations to fermion pairs and is due to the Ma-
jorana nature of the neutralino. The result is that
all low velocity neutralino annihilation diagrams to
fermion pairs have amplitudes proportional to the fi-
nal state fermion mass. The chargino annihilation
cross section to fermions, however, does not suffer
from such an helicity suppression, so that it is again
Γ11 ∼ α2

2/m
2
χ ≫ Γ22. Then:

σv(χ0χ0 → e+e−) ∼ |d1|2
α2

2

m2
χ

. (10)

Then we have that, after the Sommerfeld correction,
the neutralino annihilates to W bosons and to e+e−

pairs (and indeed to all fermion pairs) with similar
rates, apart from O(1) factors. This means that while
the W channel is enhanced by a factor |d1|2, the elec-
tron channel is enhanced by a factor |d1|2m2

χ/m
2
e. The

reason is that the annihilation can proceed through a
ladder diagram like the one shown in Fig. 4, in which
basically the electron-positron pair is produced by an-
nihilation of a chargino pair close to an on-shell state.
This mechanism can be similarly extended to annihi-
lations to other charged leptons, neutrinos or quarks.

IV. CDM SUBSTRUCTURE: ENHANCING

THE SOMMERFELD BOOST

There is a vast reservoir of clumps in the outer halo
where they spend most of their time. Clumps should
survive perigalacticon passage over a fraction (say ν)
of an orbital time-scale, td = r/vr, where vr is the or-
bital velocity (given by v2

r = GM/r). It is reasonable
to assume that the survival probability is a function
of the ratio between td and the age of the halo tH ,
and that it vanishes for td → 0. Thus, at linear order
in the (small) ratio td/tH , a first guess at the clump
mass fraction as a function of galactic radius would

be fclump ∝ td. We conservatively adopt the clump

mass fraction µcl = νrv−1
r t−1

H with ν = 0.1 − 1. This
gives a crude but adequate fit to the highest resolution
simulations, which find that the outermost halo has a
high clump survival fraction, but that near the sun
only 0.1-1 % survive [17]. In the innermost galaxy,
essentially all clumps are destroyed.

Suppose the clump survival fraction S(r) ∝ fclump ∝
r3/2 to zeroth order. The annihilation flux is propor-
tional to ρ2 ×Volume× S(r) ∝ S(r)/r. This suggests
we should expect to find an appreciable gamma ray
flux from the outer galactic halo. It should be quasi-
isotropic with a ∼10% offset from the centre of the
distribution. The flux from the Galactic Centre would
be superimposed on this. High resolution simulations
demonstrate that clumps account for as much lumi-
nosity as the uniform halo [18], [19]. However much
of the soft lepton excess from the inner halo will be
suppressed due to the clumpiness being much less in
the inner galaxy.

We see from the numerical simulations of our halo,
performed at a mass resolution of 1000M⊙ that the
subhalo contribution to the annihilation luminosity
scales as M−0.226

min [19]. For Mmin = 105M⊙, this
roughly equates the contribution of the smooth halo
at r = 200 kpc from the center. This should con-
tinue down to the minimum subhalo mass. We take
the latter to be 10−6M⊙ clumps, corresponding the
damping scale of a bino-like neutralino [20, 21]. We
consider this as representative of the damping scale of
neutralino dark matter, although it should be noted
that the values of this cutoff for a general weakly inter-
acting massive particle (WIMP) candidate can span
several orders of magnitude, depending on the details
of the underlying particle physics model [22, 23]. It
should also be taken into account that the substruc-
ture is a strong function of galactic radius. Since the
dark matter density drops precipitously outside the
solar circle (as r−2), the clump contribution to boost
is important in the solar neighbourhood. However ab-
sent any Sommerfeld boost, it amounts only to a fac-
tor of order unity. Incidentally the simulations show
that most of the luminosity occurs in the outer parts
of the halo [19] and that the boost here due to sub-
structure is large, typically a factor of 230 at r200.

However there is another effect of clumpiness, namely
low internal velocity dispersion. In fact, the preced-
ing discussion greatly underestimates the clump con-
tribution to the annihilation signal. This is because
the coldest substructure survives clump destruction
albeit on microscopic scales. Within the clumps, the
velocity dispersion σ initially is low. Thus, the anni-
hilation cross section is further enhanced by the Som-
merfeld effect in the coldest surviving substructure.
We now estimate that including this effect results in a
Sommerfeld-enhanced clumpiness boost factor at the
solar neighborhood of 104 to 105.

To infer σ from the mass M of the clump is straight-
forward. The scalings can be obtained by combin-
ing dynamically self-consistent solutions for the radial



dependence of the phase space density in simulated
CDM halos [24] as well as directly from the simu-
lations [25] ρ/σǫ ∝ r−α, combined with our ansatz
about clump survival that relates minimum clump
mass to radius and the argument that marginally sur-
viving clumps have density contrast of order unity.
With ǫ = 3 and α = 1.875 [26], we infer (for the
isotropic case) that σ ∝ ρ1/ǫrα/ǫ ∝∼M1/4. This is
a compromise between the two exact solutions for
nonlinear clumps formed from hierarchical clustering
of CDM: spherical (M ∝ r3) or Zeldovich pancakes
(M ∝ r), and is just the self-similar scaling limiting
value. The numerical simulations of [17] suggest a
scaling Msub ∝ v3.5

max down to the resolution limit of
∼ 103M⊙, somewhat steeper than self-similar scaling.

So one can combine this result with the previous scal-
ing to compute the total boost, i.e., taking into ac-
count both the clumpiness and the Sommerfeld en-
hancement. We know from the analysis of Springel et
al. [19] that for a minimum halo mass of 10−6M⊙ the
luminosity of the subhalo component should more or
less equate to that of the smooth halo at the galac-
tocentric radius, i.e. L0

sh ≃ L0
sm at r = 8 kpc, where

the superscript 0 stands for the luminosity in the ab-
sence of any Sommerfeld correction. Thus the boost
factor with respect to a smooth halo is of order unity,
after the presence of subhalos is taken in consider-
ation. Next we take into account the Sommerfeld
enhancement. The velocity dispersion in the halo is
β ∼ 10−3, while the velocity dispersion in the subha-
los is β ∼ 10−5 for a 105M⊙ clump, and can be scaled
down to smaller clumps using the σ ∝∼M1/4 relation.
From the discussion in sec. II and in particular from
Figs. 2 and 3 it appears that, if the dark matter mass
is <∼ 10 TeV and far from the resonance occurring for
m ≃ 4.5 TeV: (1) the Sommerfeld enhancement is the
same for the halo and for the subhalos, since it has al-
ready reached the saturation regime; (2) it is of order
30 at most, so that the resulting boost factor still falls
short by at least one order of magnitude with respect
to the value needed to explain the PAMELA data. On
the other hand, if the dark matter mass is close to its
resonance value, then a larger value of the boost can
be achieved inside the cold clumps, since (1) the en-
hancement is growing like 1/v2 and (2) it is saturating
at a small value of β. Referring for definiteness to the
top curve in the top panel of Fig. 3 (m = 4.5 TeV),
one finds S ≃ 104 − 105 for all clumps with mass
M <∼ 109M⊙ (that is roughly the mass of the largest
clumps) while the smooth halo is enhanced by a factor
1000. Then the net result is that the boost factor is
of order 104 − 105 and is mainly due to the Sommer-
feld enhancement in the cold clumps (the enhance-
ment in the diffuse halo only contributing a fraction
1-10%). Of course the details will be model depen-
dent; it should also be stressed that the enhancement
strongly depends on the value of the mass when this
is close to the resonance.

V. DISCUSSION

In the previous section we have shown how it is possi-
ble to get a boost factor of order 104 − 105 for a dark
matter particle mass of order 4.5 TeV. This is tantaliz-
ing because this is roughly the value one needs to ex-
plain the PAMELA data for a dark matter candidate
with this given mass, as can be inferred by analysis of
Fig. 9 of Ref [8]. Although we have made several ap-
proximations concerning the clump distribution and
velocity, it should be noted that our results still hold
as long as the majority of the clumps are very cold
(β <∼ 10−4) because this is the regime in which the en-
hancement becomes constant. The saturation of the
Sommerfeld effect also plays a crucial role in showing
that the very coldest clumps are unable to contribute
significantly to the required boost factor if the dark
matter mass is not close to one of the Sommerfeld
resonances. Because of saturation below β ∼ 10−4,
the Sommerfeld boost is insensitive to extrapolations
beyond the currently resolved scales in simulations.
Note however that the precise value for the dark mat-
ter particle mass is uncertain because of such model-
dependent assumptions as the adopted mass-splitting,
the multiplet nature of the supersymmetric particles,
and the possibility of different couplings, weaker than
weak.

The model presented here does not pose any problem
from the point of view of the high energy gamma-
ray emission from the centre of the galaxy, since very
few clumps are presents in the inner core and thus
there is no Sommerfeld enhancement. Thus there is
no possibility of violating the EGRET or HESS ob-
servations of the galactic center or ridge, contrary to
what is argued in Ref. [27]. There is a potential prob-
lem however with gamma ray production beyond the
solar radius out to the outer halo. From [19], the sim-
ulations are seen to yield an additional enhancement
due to clumpiness alone above 105M⊙ of around 80%
at r200 in the annihilation luminosity. Extrapolating
to earth mass clumps, the enhancement is 230 in the
annihilation luminosity at the same radius. This is
what a distant observer would see. The incorporation
of the Sommerfeld factor would greatly amplify this
signal by S ∼ 104 − 105.

The expected flux that would be observed by look-
ing in a direction far from the galactic center can be
readily estimated. Assuming an effective cross section
σv = 3× 10−22 cm3 s−1, corresponding to a Sommer-
feld boost of 104 on top of the canonical value of the
cross section times velocity, the number of annihila-
tions on the line of sight is roughly 4×10−9(m/TeV)−2

cm−2 s−1. We have assumed a Navarro-Frenk-White
(NFW) profile. The effect of the clumpiness is still
not included in this estimate. Following the results of
the simulation in Ref. [19], this value should be mul-
tiplied by a factor ∼ 200. Convolving with the single
annihilation spectrum of a 5 TeV dark matter particle
yields the flux shown in Fig. 5. There we show the
spectrum that would be produced if the dark mat-
ter particle would annihilate exclusively either to W
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FIG. 5: Contribution to the diffuse galactic photon back-
ground from the annihilation of a 5 TeV dark matter parti-
cle, for different channels, when both clumpiness and the
Sommerfeld enhancement in cold clumps are taken into
account, compared with the measurements of the diffuse
gamma background from EGRET [28]. The label “Hyb1”
(solid black line) stands for a hybrid model in which the
dark matter annihilates to τ leptons 90% of the time and
to W pairs the rest of the time. The label “Hyb2” (dashed
black line) stands for a model in which the dark matter an-
nihilates to leptons and quarks only, with the same cross-
section apart from color factors. The latter could be real-
ized through the circumvention of helicity suppression.

bosons, b quarks or τ leptons (blue, red and green
curves, respectively). We also consider a candidate
that annihilates to τ leptons 90% of the time and to
W s the remaining 10% of the time (model “Hyb1”)
and a candidate that annihilates only to quarks and
leptons, with the same cross section apart from color
factors (model “Hyb2”).

The gamma ray signal mostly originates from the
outer halo and should be detectable as an almost
isotropic hard gamma-ray background. Candidates
annihilating to heavy quarks or to gauge bosons seem
to be excluded by EGRET. On the other hand, a dark
matter particle annihilating to τ leptons is compatible
with the measurements of EGRET at these energies
[28], and within the reach of FERMI.

There are however at least two reasons that induce
significant uncertainty into any estimates. Firstly, the
halo density profile in the outer galaxy may be sub-
stantially steeper than is inferred from an NFW pro-
file, as current models are best fit by an Einasto pro-
file [29], ρ(r) ∝ exp[(−2/α((r/rs)

α − 1)], as opposed
to the asymptotic NFW profile ρ(r) ∝ r−3. Using
the Einasto profile yields at least a 10% reduction.
Another possibility is to use a Burkert profile [30],
that gives a better phenomenological description of
the dark matter distribution inside the halo, as it is
inferred by the rotation curves of galaxies [31, 32].
Using a Burkert profile, the flux is reduced by a fac-
tor 3. Secondly, and more importantly, the subhalos
are much less concentrated at greater distances from
the Galactic Centre [33]. These effects should sub-
stantially reduce the gamma ray contribution from
the outer halo. A future application will be to eval-

uate the extragalactic diffuse gamma ray background
where the evolution of clumpiness with redshift should
play an interesting role in producing a possible spec-
tral feature in the isotropic component. Note that the
annihilation rate originating from very high redshift
subhalo substructure and clumpiness near the neu-
tralino free-streaming scale [34] is mostly suppressed
due to the saturation of the Sommerfeld effect that we
described above.

Because of the saturation of the Sommerfeld boost, it
should be possible to focus future simulations on im-
proved modelling of the radial profiles and concentra-
tions of substructures in the outer halo. It is these that
contribute significantly to the expected diffuse gamma
if our interpretation of the PAMELA and the ATIC
data, and in particular the required normalisation and
hence boost, is correct. Of course, there are other pos-
sible explanations of the high energy positron data,
most notably the flux from a local pulsar [35, 36, 37]
that has recently been detected as a TeV gamma ray
source.

An interesting consequence of the model proposed
here is the production of synchrotron radiation emit-
ted by the electrons and positrons produced in the
dark matter annihilations, similar to the one that is
possibly the cause of the observed “WMAP haze”
[38, 39]. For a TeV candidate, this synchrotron emis-
sion would be visible in the ν >∼ 100 GHz frequency
region. This region will be probed by the Planck
mission; the synchrotron radiation would then give
rise to a galactic foreground “Planck haze” in the mi-
crowave/far infrared part of the spectrum. This quasi-
isotropic high frequency synchrotron component will
be an additional source of B-mode foregrounds that
will need to be incorporated into proposed attempts
to disentangle any primordial B-mode component in
the cosmic microwave background. Another interest-
ing application would be to look at the gamma-ray
emission from specific objects, like the Andromeda
Galaxy (M31). M31 has been observed in the relevant
energy range by the CELESTE and HEGRA atmo-
spheric Cherenkov telescopes, and limits on the par-
tial cross section to photons, in the absence of boost,
were obtained in Ref. [40].

Finally, we note that in Sec. III we have described a
mechanism that can enhance the production of leptons
(especially light leptons) in neutralino dark matter an-
nihilations, making the leptonic channel as important
as the gauge boson channel. A dark matter candidate
annihilating mainly into leptons can simultaneously
fit the PAMELA positron and antiproton data, ow-
ing to the fact that no antiproton excess is produced.
The enhancement of the lepton branching ratio can
possibly alleviate the problem of antiproton produc-
tion following neutralino annihilation into a pair of
gauge bosons. It should however be noted that the
mechanism in question also enhances the quark chan-
nel in a similar way, thus introducing an additional
source of antiprotons. It would thus be desirable to
suppress in some way the quark annihilation channel.
This could be realised in a variation of the above men-



tioned mechanism, if the lightest neutralino is quasi-
degenerate in mass with the lightest slepton l̃; this is
what happens for example in the τ̃ coannihilation re-
gion. In this case, the Sommerfeld enhancement would
proceed through the creation of an intermediate l̃+ l̃−

bound state that would subsequently annihilate to the
corresponding standard model lepton pair, without
producing any (tree-level) quark. This points to the
necessity of further investigating different models in
order to assess if the boost in the leptonic branching
ratio is indeed compatible with the PAMELA data.
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