36 research outputs found

    Guida alla redazione degli atti amministrativi

    Get PDF
    La "Guida alla redazione degli atti amministrativi" intende fornire indicazioni per la redazione degli atti per tutti i funzionari della pubblica amministrazione. Si articola in tre parti: (a) la lingua degli atti, (b) la struttura del provvedimento amministrativo, (c) il rinvio ad altri atti. Ne è autore un gruppo di linguisti e giuristi facenti capo all'ITTIG-CNR (Istituto per le Tecniche e Tecnologie dell'Informazione Giuridica) e dell'Accademia della Crusca

    Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    Get PDF
    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR)

    Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy

    No full text
    Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas

    Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps

    No full text
    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). © 2012 Pitzalis et al

    Pre- and poststimulus alpha rhythms are related to conscious visual perception: A high-resolution EEG study

    No full text
    Conscious and unconscious visuospatial processes have been related to parietooccipital cortical activation as revealed by late visual-evoked potentials. Here the working hypothesis was that a specific pattern of pre- and poststimulus theta (about 4-6 Hz) and alpha (about 6-12 Hz) rhythms is differently represented during conscious compared with unconscious visuospatial processes. Electroencephalographic (EEG) data (128 channels) were recorded in normal adults during a visuospatial task. A cue stimulus appeared at the right or left (equal probability) monitor side for a "threshold time" inducing about 50% of correct recognitions. It was followed (2 s) by visual go stimuli at spatially congruent or incongruent position with reference to the cue location. Left (right) mouse button was clicked if the go stimulus appeared at the left (right) monitor side. Then, subjects said "seen" if they had detected the cue stimulus or "not seen" if missed (self-report). Sources of theta and alpha rhythms during seen and not seen EEG epochs were estimated by low-resolution electromagnetic brain topography software. Results showed that the prestimulus "low-band" (about 6-10 Hz) alpha rhythms in frontal, parietal, and occipital areas were stronger in power in the seen than in the not seen trials. After the visual stimulation, the power of the "high-band" (about 10-12 Hz) alpha rhythms in parietal and occipital areas decreased more in the seen than in the not seen trials. The present results suggest that visuospatial consciousness covary-presumably with a facilitatory effect-with the power of both pre- and poststimulus alpha rhythms

    Parallel motion signals to the medial and lateral motion areas V6 and MT+.

    No full text
    MT+ and V6 are key motion areas of the dorsal visual stream in both macaque and human brains. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to find the electrophysiological correlates of V6 and to define its temporal relationship with the activity observed in MT+. We also determined the spatio-temporal profile of the motion coherency effect on visual evoked potentials (VEPs), and localized its neural generators. We found that area V6 participates in the very early phase of the coherentmotion processing and that its electroencephalographic activity is almost simultaneous with that of MT+.We also found a late second activity in V6 that we interpret as a re-entrant feedback from extrastriate visual areas (e.g. area V3A). Three main cortical sources were differently modulated by the motion coherence: while V6 and MT+ showed a preference for the coherent motion, area V3A preferred the random condition. The response timing of these cortical sources indicates that motion signals flow in parallel from the occipital pole to the medial and lateralmotion areas V6 and MT+, suggesting the view of a differential functional role
    corecore