448 research outputs found

    Birthweight and other perinatal outcomes of singletons conceived after assisted reproduction compared to natural conceived singletons in couples with unexplained subfertility : follow-up of two randomized clinical trials

    Get PDF
    Acknowledgments We thank all the couples, the hospitals and their staff that participated in the trials. For detailed information of participating hospitals see literature of the INeS trial and SUPER study. Funding Both initial trials were supported by a grant from ZonMW, the Dutch Organization for Health Research and Development (INeS 120620027, SUPER 80-83600-98-10192). The INeS also had a grant from Zorgverzekeraars Nederland, the Dutch association of healthcare insurers (09-003)Peer reviewedPublisher PD

    The relationship between anti-mullerian hormone in women receiving fertility assessments and age at menopause in subfertile women: evidence from large population studies

    Get PDF
    <p>Context: Anti-Müllerian hormone (AMH) concentration reflects ovarian aging and is argued to be a useful predictor of age at menopause (AMP). It is hypothesized that AMH falling below a critical threshold corresponds to follicle depletion, which results in menopause. With this threshold, theoretical predictions of AMP can be made. Comparisons of such predictions with observed AMP from population studies support the role for AMH as a forecaster of menopause.</p> <p>Objective: The objective of the study was to investigate whether previous relationships between AMH and AMP are valid using a much larger data set.</p> <p>Setting: AMH was measured in 27 563 women attending fertility clinics.</p> <p>Study Design: From these data a model of age-related AMH change was constructed using a robust regression analysis. Data on AMP from subfertile women were obtained from the population-based Prospect-European Prospective Investigation into Cancer and Nutrition (Prospect-EPIC) cohort (n = 2249). By constructing a probability distribution of age at which AMH falls below a critical threshold and fitting this to Prospect-EPIC menopausal age data using maximum likelihood, such a threshold was estimated.</p> <p>Main Outcome: The main outcome was conformity between observed and predicted AMP.</p> <p>Results: To get a distribution of AMH-predicted AMP that fit the Prospect-EPIC data, we found the critical AMH threshold should vary among women in such a way that women with low age-specific AMH would have lower thresholds, whereas women with high age-specific AMH would have higher thresholds (mean 0.075 ng/mL; interquartile range 0.038–0.15 ng/mL). Such a varying AMH threshold for menopause is a novel and biologically plausible finding. AMH became undetectable (<0.2 ng/mL) approximately 5 years before the occurrence of menopause, in line with a previous report.</p> <p>Conclusions: The conformity of the observed and predicted distributions of AMP supports the hypothesis that declining population averages of AMH are associated with menopause, making AMH an excellent candidate biomarker for AMP prediction. Further research will help establish the accuracy of AMH levels to predict AMP within individuals.</p&gt

    Predicting menopausal age with anti-Müllerian hormone: A cross-validation study of two existing models

    Get PDF
    Objective This study aimed to cross-validate two comparable Weibull models of prediction of age at natural menopause from two cohorts, the Scheffer, van Rooij, de Vet (SRV) cohort and the Tehran Lipid and Glucose Study (TLGS) cohort. It summarizes advantages and disadvantages of the models and underlines the need for achieving correct time dependency in dynamic variables like anti-Müllerian hormone. Methods Models were fitted in the original datasets and then applied to the cross-validation datasets. The discriminatory capacity of each model was assessed by calculating C-statistics for the models in their own data and in the cross-validation data. Calibration of the models on the cross-validation data was assessed by measuring the slope, intercept and Weibull shape parameter. Results The C-statistic for the SRV model on the SRV data was 0.7 (95% confidence interval (CI) 0.7-0.8) and on the TLGS data it was 0.8 (95% CI 0.8-0.9). For the TLGS model on the TLGS data, it was 0.9 (95% CI 0.8-0.9) and on the SRV data it was 0.7 (95% CI 0.6-0.8). After calibration of the SRV model on the TLGS data, the slope was 1, the intercept -0.3 and the shape parameter 1.1. The TLGS model on the SRV data had a slope of 0.3, an intercept of 12.7 and a shape parameter of 0.6. Conclusions Both models discriminate well between women that enter menopause early or late during follow-up. While the SRV model showed good agreement between the predicted risk of entering menopause and the observed proportion of women who entered menopause during follow-up (calibration) in the cross-validation dataset, the TLGS model showed poor calibration. © 2014 International Menopause Society

    First effective mHealth nutrition and lifestyle coaching program for subfertile couples undergoing in vitro fertilization treatment:a single-blinded multicenter randomized controlled trial

    Get PDF
    Objective: To study compliance and effectiveness of the mHealth nutrition and lifestyle coaching program Smarter Pregnancy in couples undergoing in vitro fertilization (IVF) treatment with or without intracytoplasmic sperm injection (ICSI). Design: Multicenter, single-blinded, randomized controlled trial, conducted from July 2014 to March 2017. Setting: IVF clinics. Patient(s): A total of 626 women undergoing IVF treatment with or without ICSI and 222 male partners. Interventions(s): Couples were randomly assigned to the light (control group) or regular (intervention group) Smarter Pregnancy program. Both groups filled out a baseline screening questionnaire on nutrition and lifestyle behaviors, and the intervention group received coaching tailored to inadequate behaviors during the 24-week period. Main Outcome Measure(s): Difference in improvement of a composite dietary and lifestyle risk score for the intake of vegetables, fruits, folic acid supplements, smoking, and alcohol use after 24 weeks of the program. Result(s): Compared with control subjects, women and men in the intervention group showed a significantly larger improvement of inadequate nutrition behaviors after 24 weeks of coaching. At the same time, the women also showed a significantly larger improvement of inadequate lifestyle behaviors. Conclusion(s): The mHealth coaching program Smarter Pregnancy is effective and improves the most important nutritional and lifestyle behaviors among couples undergoing IVF/ICSI treatment. International multicenter randomized trials are recommended to study the effect of using Smarter Pregnancy on pregnancy, live birth, and neonatal outcome. ((C)2020 by American Society for Reproductive Medicine.)y

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity:a nested cohort study

    Get PDF
    STUDY QUESTION: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? SUMMARY ANSWER: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. WHAT IS KNOWN ALREADY: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. STUDY DESIGN, SIZE, DURATION: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). PARTICIPANTS/MATERIALS, SETTING, METHODS: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m(2) in the intervention group, and 34.9 ± 2.9 kg/m(2) in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. LIMITATIONS, REASONS FOR CAUTION: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. WIDER IMPLICATIONS OF THE FINDINGS: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by a grant from ZonMw, the Dutch Organization for Health Research and Development (50-50110-96-518). A.H. has received an unrestricted educational grant from Ferring pharmaceuticals BV, The Netherlands. B.W.J.M. is supported by an NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds Stock options for ObsEva. B.W.J.M. has received research funding from Guerbet, Ferring and Merck. F.J.M.B. reports personal fees from membership of the external advisory board for Merck Serono and a research support grant from Merck Serono, outside the submitted work. TRIAL REGISTRATION NUMBER: The LIFEstyle RCT was registered at the Dutch trial registry (NTR 1530). https://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1530

    Is home-based monitoring of ovulution to time frozen embryo transfer a cost-effective alternative for hospital-based monitoring of ovulation? Study protocol of the multicentre, non-inferiority Antarctica-2 randomised controlled trial

    Get PDF
    STUDY QUESTION: The objective of this trial is to compare the effectiveness and costs of true natural cycle (true NC-) frozen embryo transfer (FET) using urinary LH tests to modified NC-FET using repeated ultrasound monitoring and ovulation trigger to time FET in the NC. Secondary outcomes are the cancellation rates of FET (ovulation before hCG or no dominant follicle, no ovulation by LH urine test, poor embryo survival), pregnancy outcomes (miscarriage rate, clinical pregnancy rates, multiple ongoing pregnancy rates, live birth rates, costs) and neonatal outcomes (including gestational age, birthweight and sex, congenital abnormalities or diseases of babies born). WHAT IS KNOWN ALREADY: FET is at the heart of modern IVF. To allow implantation of the thawed embryo, the endometrium must be prepared either by exogenous oestrogen and progesterone supplementation (artificial cycle (AC)-FET) or by using the NC to produce endogenous oestradiol before and progesterone after ovulation to time the transfer of the thawed embryo (NC-FET). During an NC-FET, women visit the hospital repeatedly and receive an ovulation trigger to time FET (i.e. modified (m)NC-FET or hospital-based monitoring). From the woman’s point of view, a more natural approach using home-based monitoring of the ovulation with LH urine tests to allow a natural ovulation to time FET may be desired (true NC-FET or home-based monitoring). STUDY DESIGN, SIZE, DURATION: This is a multicentre, non-inferiority prospective randomised controlled trial design. Consenting women will undergo one FET cycle using either true NC-FET or mNC-FET based on randomisation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Based on our sample size calculation, the study group will consist of 1464 women between 18 and 45 years old who are scheduled for FET. Women with anovulatory cycles, women who need ovulation induction and women with a contra indication for pregnancy will be excluded. The primary outcome is ongoing pregnancy. Secondary outcomes are cancellation rates of FET, pregnancy outcomes (including miscarriage rate, clinical pregnancy, multiple pregnancy rate and live birth rate). Costs will be estimated by counting resource use and calculating unit prices. STUDY FUNDING/COMPETING INTEREST(S): The study received a grant from the Dutch Organisation for Health Research and Development (ZonMw 843002807; www.zonmw.nl). ZonMw has no role in the design of the study, collection, analysis, and interpretation of data or writing of the manuscript. F.B. reports personal fees from member of the external advisory board for Merck Serono, grants from Research support grant Merck Serono, outside the submitted work. A.E.P.C. reports and Unrestricted grant of Ferring B.V. to the Center for Reproductive medicine, no personal fee. Author up-to-date on Hyperthecosis. Congress meetings 2019 with Ferring B.V. and Theramex B.V. M.G. reports Department research and educational grants from Guerbet, Merck and Ferring (location VUMC) outside the submitted work. E.R.G. reports personal fees from Titus Health Care, outside the submitted work. C.B.L. reports grants from Ferring, grants from Merck, from Guerbet, outside the submitted work. The other authors have none to declare. TRIAL REGISTRATION NUMBER: Dutch Trial Register (Trial NL6414 (NTR6590), https://www.trialregister.nl/). TRIAL REGISTRATION DATE: 23 July 2017 DATE OF FIRST PATIENT’S ENROLMENT: 10 April 201

    Конференции

    Get PDF
    STUDY QUESTION: What is the cost-effectiveness of in vitro fertilization(IVF) with conventional ovarian stimulation, single embryotransfer (SET) and subsequent cryocycles or IVF in a modified natural cycle (MNC) compared with intrauterine insemination with controlled ovarian hyperstimulation (IUI-COH) as a first-line treatment in couples with unexplained subfertility and an unfavourable prognosis on natural conception?. SUMMARY ANSWER: Both IVF strategies are significantly more expensive when compared with IUI-COH, without being significantly more effective. In the comparison between IVF-MNC and IUI-COH, the latter is the dominant strategy. Whether IVF-SET is cost-effective depends on society's willingness to pay for an additional healthy child. WHAT IS KNOWN ALREADY: IUI-COH and IVF, either after conventional ovarian stimulation or in a MNC, are used as first-line treatments for couples with unexplained or mild male subfertility. As IUI-COH is less invasive, this treatment is usually offered before proceeding to IVF. Yet, as conventional IVF with SET may lead to higher pregnancy rates in fewer cycles for a lower multiple pregnancy rate, some have argued to start with IVF instead of IUI-COH. In addition, IVF in the MNC is considered to be a more patient friendly and less costly form of IVF. STUDY DESIGN, SIZE, DURATION: We performed a cost-effectiveness analysis alongside a randomized noninferiority trial. Between January 2009 and February 2012, 602 couples with unexplained infertility and a poor prognosis on natural conception were allocated to three cycles of IVF-SET including frozen embryo transfers, six cycles of IVF-MNC or six cycles of IUI-COH. These couples were followed until 12 months after randomization. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected data on resource use related to treatment, medication and pregnancy from the case report forms. We calculated unit costs from various sources. For each of the three strategies, we calculated the mean costs and effectiveness. Incremental cost-effectiveness ratios (ICER) were calculated for IVF-SET compared with IUI-COH and for IVF-MNC compared with IUI-COH. Nonparametric bootstrap resampling was used to investigate the effect of uncertainty in our estimates. MAIN RESULTS AND THE ROLE OF CHANCE: There were 104 healthy children (52%) born in the IVF-SET group, 83 (43%) the IVF-MNC group and 97 (47%) in the IUI-COH group. The mean costs per couple were (sic)7187 for IVF-SET, (sic)8206 for IVF-MNC and (sic)5070 for IUI-COH. Compared with IUI-COH, the costs for IVF-SET and IVF-MNC were significantly higher (mean differences (sic)2117; 95% CI: (sic)1544-(sic)2657 and (sic)3136, 95% CI: (sic)2519-(sic)3754, respectively). The ICER for IVF-SET compared with IUI-COH was (sic)43 375 for the birth of an additional healthy child. In the comparison of IVF-MNC to IUI-COH, the latter was the dominant strategy, i.e. more effective at lower costs. LIMITATIONS, REASONS FOR CAUTION: We only report on direct health care costs. The present analysis is limited to 12 months. WIDER IMPLICATIONS OF THE FINDINGS: Since we found no evidence in support of offering IVF as a first-line strategy in couples with unexplained and mild subfertility, IUI-COH should remain the treatment of first choice

    Enrichment of cell cycle pathways in progesterone-treated endometrial organoids of infertile women compared to fertile women

    Get PDF
    PURPOSE: To investigate whether the transcriptome profile differs between progesterone-treated infertile and fertile endometrial organoids. METHODS: Endometrial biopsies were obtained from 14 infertile and seven fertile women, after which organoids were generated from isolated epithelial cells. To mimic the secretory phase, organoids were sequentially treated with 17β-estradiol (E2) and progesterone (P4) and subjected to RNA sequencing. Differentially expressed genes (DEGs) were identified using DESeq2 (lfcThreshold = 0, log 2 Fold Change ≥ 1.0 or ≤ -1.0), and a principal component analysis (PCA) plot was generated. Functional enrichment analysis was performed by overrepresentation analysis and Gene Set Enrichment Analysis (GSEA). To functionally assess proliferation, OrganoSeg surface measurements were performed before (T 0) and after (T 1) differentiation of organoids, and T 1/T 0 ratios were calculated to determine the proliferation rate. RESULTS: Although the PCA plot did not show clear clustering of the fertile and infertile samples, 363 significant DEGs (129 upregulated and 234 downregulated) were detected in infertile compared to fertile organoids. Mainly cell cycle processes were highly enriched in infertile organoids. Thus, we hypothesised that proliferative activity during differentiation may be higher in infertile organoids compared to fertile organoids. However, this could not be validated by cell surface measurements. CONCLUSIONS: This study revealed that cell cycle processes were enriched in E2/P4-treated infertile endometrial organoids as compared to fertile organoids. This could reflect persistently higher proliferative activity of the endometrial epithelial cells in differentiated infertile organoids compared to fertile organoids. To confirm this hypothesis, further studies are warranted

    Endometrial scratching in women with one failed IVF/ICSI cycle-outcomes of a randomised controlled trial (SCRaTCH)

    Get PDF
    STUDY QUESTION: Does endometnal scratching in women with one failed IVF/ICSI treatment affect the chance of a live birth of the subsequent fresh IVF/ICSI cycle? SUMMARY ANSWER: In this study, 4.6% more live births were observed in the scratch group, with a likely certainty range between -0.7% and +9.9%. WHAT IS KNOWN ALREADY: Since the first suggestion that endometrial scratching might improve embryo implantation during IVF/ICSI, many clinical trials have been conducted. However, due to limitations in sample size and study quality, it remains unclear whether endometrial scratching improves IVF/ICSI outcomes. STUDY DESIGN, SIZE, DURATION: The SCRaTCH trial was a non-blinded randomised controlled trial in women with one unsuccessful IVF/ICSI cycle and assessed whether a single endometrial scratch using an endometrial biopsy catheter would lead to a higher live birth rate after the subsequent IVF/ICSI treatment compared to no scratch. The study took place in 8 academic and 24 general hospitals. Participants were randomised between January 2016 and July 2018 by a web-based randomisation programme. Secondary outcomes included cumulative 12-month ongoing pregnancy leading to live birth rate. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with one previous failed IVF/ICSI treatment and planning a second fresh IVF/ICSI treatment were eligible. In total, 933 participants out of 1065 eligibles were included (participation rate 88%). MAIN RESULTS AND THE ROLE OF CHANCE: After the fresh transfer, 4.6% more live births were observed in the scratch compared to control group (110/465 versus 88/461, respectively, risk ratio (RR) 1.24 [95% CI 0.96-1.59]). These data are consistent with a true difference of between - 0.7% and 9.9% (95% CI), indicating that while the largest proportion of the 95% CI is positive, scratching could have no or even a small negative effect. Biochemical pregnancy loss and miscarriage rate did not differ between the two groups: in the scratch group 27/153 biochemical pregnancy losses and 14/126 miscarriages occurred, while this was 19/130 and 17/11 I for the control group (RR 1.21 (95% CI 0.71-2.07) and RR 0.73 (95% CI 0.38-1.40), respectively). After 12 months of follow-up, 5.1% more live births were observed in the scratch group (202/467 versus 178/466), of which the true difference most likely lies between -1.2% and +11.4% (95% CI). LIMITATIONS, REASONS FOR CAUTION: This study was not blinded. Knowledge of allocation may have been an incentive for participants allocated to the scratch group to continue treatment in situations where they may otherwise have cancelled or stopped. In addition, this study was powered to detect a difference in live birth rate of 9%. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study are an incentive for further assessment of the efficacy and clinical implications of endometrial scratching. If a true effect exists, it may be smaller than previously anticipated or may be limited to specific groups of women undergoing IVF/ICSI. Studying this will require larger sample sizes, which will be provided by the ongoing international individual participant data-analysis (PROSPERO CRD42017079120). At present, endometrial scratching should not be performed outside of clinical trials
    corecore