436 research outputs found

    Exercise-induced mitral regurgitation and right ventricle to pulmonary circulation uncoupling across the heart failure phenotypes

    Get PDF
    Exercise-induced mitral regurgitation (Ex-MR) is one of the mechanisms that contribute to reduced functional capacity in heart failure (HF). Its prevalence is not well defined across different HF subtypes. The aim of the present study was to describe functional phenotypes and cardiac response to exercise in HFrEF, HFmrEF, and HFpEF, according to Ex-MR prevalence. A total of 218 patients with HF [146 men, 68 (59–78) yr], 137 HFrEF, 41 HFmrEF, 40 HFpEF, and 23 controls were tested with cardiopulmonary exercise test combined with exercise echocardiography. Ex-MR was defined as development of at least moderate (≥2+/4+) regurgitation during exercise. Ex-MR was highly prevalent in the overall population (52%) although differed in the subgroups as follows: 82/137 (60%) in HFrEF, 17/41 (41%) in HFmrEF, and 14/40 (35%) in HFpEF (P < 0.05). Ex-MR was associated with a high rate of ventilation (VE) to carbon dioxide production (VCO2) in all HF subtypes [31.2 (26.6–35.6) vs. 33.4 (29.6–40.5), P = 0.004; 28.1 (24.5–31.9) vs. 34.4 (28.2–36.7), P = 0.01; 28.8 (26.6–32.4) vs. 32.2 (29.2–36.7), P = 0.01] and with lower peak VO2 in HFrEF and HFmrEF. Exercise right ventricle to pulmonary circulation (RV-PC) uncoupling was observed in HFrEF and HFpEF patients with Ex-MR [peak TAPSE/SPAP: HFrEF 0.40 (0.30–0.57) vs. 0.29 (0.23–0.39), P = 0.006; HFpEF 0.44 (0.28–0.62) vs. 0.31 (0.27–0.33), P = 0.05]. HFpEF with Ex-MR showed a distinct phenotype characterized by better chronotropic reserve and peripheral O2 extraction

    Effect of inhaled bronchodilators on inspiratory capacity and dyspnoea at rest in COPD

    Get PDF
    It has been shown that patients with chronic obstructive pulmonary disease (COPD) develop dynamic hyperinflation (DH), which contributes to dyspnoea and exercise intolerance. Formoterol, salmeterol and oxitropium have been recommended for maintenance therapy in COPD patients, but their effect on DH has only been assessed for salmeterol. The aim of the present study was to compare the acute effect of four inhaled bronchodilators (salbutamol, formoterol, salmeterol and oxitropium) and placebo on forced expiratory volume in one second, inspiratory capacity, forced vital capacity and dyspnoea in COPD patients. A cross-over, randomised, double-blind, placebo-controlled study was carried out on 20 COPD patients. Patients underwent pulmonary function testing and dyspnoea evaluation, in basal condition and 5, 15, 30, 60 and 120 min after bronchodilator or placebo administration. The results indicate that in chronic obstructive pulmonary disease patients with decreased baseline inspiratory capacity, there was a much greater increase of inspiratory capacity after bronchodilator administration, which correlated closely with the improvement of dyspnoea sensation at rest. For all bronchodilators used, inspiratory capacity reversibility should be tested at 30 min following the bronchodilator. On average, formoterol elicited the greatest increase in inspiratory capacity than the other bronchodilators used, though the difference was significant only with salmeterol and oxitropium. The potential advantage of formoterol needs to be tested in a larger patient population

    Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development

    Full text link
    The chromosome theory of heredity, developed in 1902–1904, became one of the foundation stones of twentieth-century genetics. It is usually referred to as the Sutton-Boveri theory after Walter Sutton and Theodor Boveri. However, the contributions of Theodor Boveri and his co-worker, Marcella O’Grady Boveri (also his wife), to the understanding of heredity and development go beyond the localization of the Mendelian hereditary factors onto the chromosomes. They investigated the interaction of cytoplasm and chromosomes, and demonstrated its relevance in heredity and development

    Chromosomal Instability and Cancer: a Complex Relationship with Therapeutic Potential

    Get PDF
    Chromosomal instability (CIN) is a hallmark of human neoplasms. Despite its widespread prevalence, knowledge of the mechanisms and contributions of CIN in cancer has been elusive. It is now evident that the role of CIN in tumor initiation and growth is more complex than previously thought. Furthermore, distinguishing CIN, which consists of elevated rates of chromosome missegregation, from aneuploidy, which is a state of abnormal chromosome number, is crucial to understanding their respective contributions in cancer. Collectively, experimental evidence suggests that CIN enables tumor adaptation by allowing tumors to constantly sample the aneuploid fitness landscape. This complex relationship, together with the potential to pharmacologically influence chromosome missegregation frequencies in cancer cells, offers previously unrecognized means to limit tumor growth and its response to therapy

    Rabl's model of the interphase chromosome arrangement tested in Chinise hamster cells by premature chromosome condensation and laser-UV-microbeam experiments

    Get PDF
    In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed

    Hallmarks of cancer-the new testament.

    Get PDF
    Diagnosis and treatment of disease demand a sound understanding of the underlying mechanisms, determining any Achilles' heel that can be targeted in effective therapies. Throughout history, this endeavour to decipher the origin and mechanism of transformation of a normal cell into cancer has led to various theories-from cancer as a curse to an understanding at the level of single-cell heterogeneity, meaning even among a single sub-type of cancer there are myriad molecular challenges to overcome. With increasing insight into cancer genetics and biology, the disease has become ever more complex to understand. The complexity of cancer as a disease was distilled into key traits by Hanahan and Weinberg in their seminal 'Hallmarks of Cancer' reviews. This lucid conceptualization of complex cancer biology is widely accepted and has helped advance cancer therapeutics by targeting the various hallmarks but, with the advancement in technologies, there is greater granularity in how we view cancer as a disease, and the additional understanding over the past decade requires us to revisit the hallmarks of cancer. Based on extensive study of the cancer research literature, we propose four novel hallmarks of cancer, namely, the ability of cells to regress from a specific specialized functional state, epigenetic changes that can affect gene expression, the role of microorganisms and neuronal signalling, to be included in the hallmark conceptualization along with evidence of various means to exploit them therapeutically

    Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories

    Get PDF
    In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered
    • …
    corecore