163 research outputs found

    Structure and Thermal Transitions in a Biomedically Relevant Liquid Crystalline Poly(ester amide)

    Get PDF
    There is still a need to develop bioresorbable polymers with high strength and high modulus for load-bearing biomedical applications. Here we investigate the liquid crystalline structural features of poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate), poly(DTD DD), a new bioresorbable poly(ester amide) that is currently studied in vivo as a slow-degrading implantable biomaterial for load bearing applications. Thermally induced structural changes in poly(DTD DD) were studied using simultaneously differential scanning calorimetry (DSC) and X-ray scattering. The hexatic SmB organization of the polymer chains that exists at room temperature becomes progressively disordered upon heating, changing into a SmF phase and then into a smectic C phase at 60 °C before turning into a free-flowing melt at 130 °C. X-ray scattering data and thermal analysis indicate the presence of a 2D ordered structure in the polymer melt. A structural model with an interesting 3-fold symmetry in the packing of the side chains around the rigid aromatic main chain, and the packing of these chains into fibrils is proposed. The liquid crystalline behavior of poly(DTD DD) makes it possible to melt process it at low temperatures without thermal degradation. This is a noteworthy advantage for the use of poly(DTD DD) as a high strength, readily processable, yet biodegradable polymer

    Cytolytic DNA vaccine encoding lytic perforin augments the maturation of- and antigen presentation by- dendritic cells in a time-dependent manner

    Get PDF
    The use of cost-effective vaccines capable of inducing robust CD8+ T cell immunity will contribute significantly towards the elimination of persistent viral infections and cancers worldwide. We have previously reported that a cytolytic DNA vaccine encoding an immunogen and a truncated mouse perforin (PRF) protein significantly augments anti-viral T cell (including CD8+ T cell) immunity. Thus, the current study investigated whether this vaccine enhances activation of dendritic cells (DCs) resulting in greater priming of CD8+ T cell immunity. In vitro data showed that transfection of HEK293T cells with the cytolytic DNA resulted in the release of lactate dehydrogenase, indicative of necrotic/lytic cell death. In vitro exposure of this lytic cell debris to purified DCs from naïve C57BL/6 mice resulted in maturation of DCs as determined by up-regulation of CD80/CD86. Using activation/proliferation of adoptively transferred OT-I CD8+ T cells to measure antigen presentation by DCs in vivo, it was determined that cytolytic DNA immunisation resulted in a time-dependent increase in the proliferation of OT-I CD8+ T cells compared to canonical DNA immunisation. Overall, the data suggest that the cytolytic DNA vaccine increases the activity of DCs which has important implications for the design of DNA vaccines to improve their translational prospects.Danushka K. Wijesundara, Wenbo Yu, Ben J. C. Quah, Preethi Eldi, John D. Hayball, Kerrilyn R. Diener, Ilia Voskoboinik, Eric J. Gowans, and Branka Grubor-Bau

    Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    Get PDF
    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival

    Targeted Deletion of Neuropeptide Y (NPY) Modulates Experimental Colitis

    Get PDF
    Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY(-/-)) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY(-/-) as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS(-/-) and NPY(-/-)/nNOS(-/-) mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY -treated rat enteric neurons in vitro exhibited increased nitrite and TNF-alpha production.NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD

    Murine CD4+ T Cell Responses Are Inhibited by Cytotoxic T Cell-Mediated Killing of Dendritic Cells and Are Restored by Antigen Transfer

    Get PDF
    Cytotoxic T lymphocytes (CTL) provide protection against pathogens and tumors. In addition, experiments in mouse models have shown that CTL can also kill antigen-presenting dendritic cells (DC), reducing their ability to activate primary and secondary CD8+ T cell responses. In contrast, the effects of CTL-mediated killing on CD4+ T cell responses have not been fully investigated. Here we use adoptive transfer of TCR transgenic T cells and DC immunization to show that specific CTL significantly inhibited CD4+ T cell proliferation induced by DC loaded with peptide or low concentrations of protein antigen. In contrast, CTL had little effect on CD4+ T cell proliferation induced by DC loaded with high protein concentrations or expressing antigen endogenously, even if these DC were efficiently killed and failed to accumulate in the lymph node (LN). Residual CD4+ T cell proliferation was due to the transfer of antigen from carrier DC to host APC, and predominantly involved skin DC populations. Importantly, the proliferating CD4+ T cells also developed into IFN-γ producing memory cells, a property normally requiring direct presentation by activated DC. Thus, CTL-mediated DC killing can inhibit CD4+ T cell proliferation, with the extent of inhibition being determined by the form and amount of antigen used to load DC. In the presence of high antigen concentrations, antigen transfer to host DC enables the generation of CD4+ T cell responses regardless of DC killing, and suggests mechanisms whereby CD4+ T cell responses can be amplified

    Lymphoid Organ-Resident Dendritic Cells Exhibit Unique Transcriptional Fingerprints Based on Subset and Site

    Get PDF
    Lymphoid organ-resident DC subsets are thought to play unique roles in determining the fate of T cell responses. Recent studies focusing on a single lymphoid organ identified molecular pathways that are differentially operative in each DC subset and led to the assumption that a given DC subset would more or less exhibit the same genomic and functional profiles throughout the body. Whether the local milieu in different anatomical sites can also influence the transcriptome of DC subsets has remained largely unexplored. Here, we interrogated the transcriptional relationships between lymphoid organ-resident DC subsets from spleen, gut- and skin-draining lymph nodes, and thymus of C57BL/6 mice. For this purpose, major resident DC subsets including CD4 and CD8 DCs were sorted at high purity and gene expression profiles were compared using microarray analysis. This investigation revealed that lymphoid organ-resident DC subsets exhibit divergent genomic programs across lymphoid organs. Interestingly, we also found that transcriptional and biochemical properties of a given DC subset can differ between lymphoid organs for lymphoid organ-resident DC subsets, but not plasmacytoid DCs, suggesting that determinants of the tissue milieu program resident DCs for essential site-specific functions

    Higher ethical objective (Maqasid al-Shari'ah) augmented framework for Islamic banks : assessing the ethical performance and exploring its determinants.

    Get PDF
    This study utilises higher objectives postulated in Islamic moral economy or the maqasid al-Shari’ah theoretical framework’s novel approach in evaluating the ethical, social, environmental and financial performance of Islamic banks. Maqasid al-Shari’ah is interpreted as achieving social good as a consequence in addition to well-being and, hence, it goes beyond traditional (voluntary) social responsibility. This study also explores the major determinants that affect maqasid performance as expressed through disclosure analysis. By expanding the traditional maqasid al-Shari’ah,, we develop a comprehensive evaluation framework in the form of a maqasid index, which is subjected to a rigorous disclosure analysis. Furthermore, in identifying the main determinants of the maqasid disclosure performance, panel data analysis is used by including several key variables alongside political and socio-economic environment, ownership structures, and corporate and Shari’ah governance-related factors. The sample includes 33 full-fledged Islamic banks from 12 countries for the period of 2008–2016. The findings show that although during the nine-year period the disclosure of maqasid performance of the sampled Islamic banks has improved, this is still short of ‘best practices’. Through panel data analysis, this study finds that the Muslim population indicator, CEO duality, Shari’ah governance, and leverage variables positively impact the disclosure of maqasid performance. However, the effect of GDP, financial development and human development index of the country, its political and civil rights, institutional ownership, and a higher share of independent directors have an overall negative impact on the maqasid performance. The findings reported in this study identify complex and multi-faceted relations between external market realities, corporate and Shari’ah governance mechanisms, and maqasid performance

    TLR1/2 Activation during Heterologous Prime-Boost Vaccination (DNA-MVA) Enhances CD8+ T Cell Responses Providing Protection against Leishmania (Viannia)

    Get PDF
    Leishmania (Viannia) are the predominant agents of leishmaniasis in Latin America. Given the fact that leishmaniasis is a zoonosis, eradication is unlikely; a vaccine could provide effective prevention of disease. However, these parasites present a challenge and we do not fully understand what elements of the host immune defense prevent disease. We examined the ability of vaccination to protect against L. (Viannia) infection using the highly immunogenic heterologous prime-boost (DNA-modified vaccinia virus) modality and a single Leishmania antigen (TRYP). Although this mode of vaccination can induce protection against other leishmaniases (cutaneous, visceral), no protection was observed against L. (V.) panamensis. However, we found that if the vaccination was modified and the innate immune response was activated through Toll-like receptor1/2(TLR1/2) during the DNA priming, vaccinated mice were protected. Protection was dependent on CD8 T cells. Vaccinated mice had higher CD8 T cell responses and decreased levels of cytokines known to promote infection. Given the long-term persistence of CD8 T cell memory, these findings are encouraging for vaccine development. Further, these results suggest that modulation of TLR1/2 signaling could improve the efficacy of DNA-based vaccines, especially where CD8 T cell activation is critical, thereby contributing to effective and affordable anti parasitic vaccines
    corecore