191 research outputs found

    Comparative prediction of cardiac events by wall motion, wall motion plus coronary flow reserve, or myocardial perfusion analysis: a multicenter study of contrast stress echocardiography

    Get PDF
    ObjectivesThis study sought to determine whether the increasing difficulty of assessing wall motion (WM), Doppler coronary flow reserve on the left anterior descending coronary artery (CFR-LAD), and myocardial perfusion (MP) during stress echocardiography (SE) was justified by increasing prognostic information in patients with known or suspected coronary artery disease.BackgroundThe use of echocardiographic contrast agents during SE permits the assessment of both CFR-LAD and MP, but their relative incremental prognostic value is undefined.MethodsThis study followed a multicenter cohort of 718 patients for 16 months after high-dose dipyridamole contrast SE for evaluation of known or suspected coronary artery disease. The ability of WM, CFR-LAD, and MP to predict cardiac events was studied by multivariable models and risk reclassification.ResultsAbnormal SE was detected as a reversible WM abnormality in 18%, reversible MP defect in 27%, and CFR-LAD <2 in 38% of subjects. Fifty cardiac events occurred (annualized event rate 6.0%). A normal MP stress test had a 1-year hard event rate of 1.2%. The C-index of outcomes prediction based on clinical data was improved with MP (p < 0.001) and WM/CFR-LAD (p = 0.037), and MP (p = 0.003) added to clinical and WM data. Net risk reclassification was improved by adding MP (p < 0.001) or CFR-LAD (net reclassification improvement p = 0.001) in addition to clinical and WM data. The model including clinical data, WM/CFR-LAD, and MP performed better than that without MP did (p = 0.012).ConclusionsThe multiparametric assessment of WM, CFR-LAD and MP during stress testing in patients with known or suspected coronary artery disease is feasible. Contrast SE allowed better prognostication, irrespective of the use of CFR-LAD or MP. The addition of either CFR-LAD or MP assessment to standard WM analysis and clinical parameters yielded progressively higher values for the prediction of cardiac events and may be required in today's intensively treated patients undergoing SE, because their average low risk of future cardiac events requires methods with higher predictive sensitivity than that available with standalone WM assessment

    An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria

    Get PDF
    This study describes an efficient transformation system for the introduction of plasmid DNA into Bifidobacterium bifidum PRL2010 and Bifidobacterium asteroides PRL2011, for which to the best of our knowledge no transformation data have been reported previously. The method is based on electroporation of bifidobacterial cells, which were made competent by an optimized methodology based on varying media and growth conditions. Furthermore, the transformation protocol was applied in order to design a PRL2010-derivative, which carries antibiotic resistance against chloramphenicol and which was used to monitor PRL2010 colonization in a murine model

    Seasonal Differences of Gene Expression Profiles in Song Sparrow (Melospiza melodia) Hypothalamus in Relation to Territorial Aggression

    Get PDF
    ) are territorial year-round; however, neuroendocrine responses to simulated territorial intrusion (STI) differ between breeding (spring) and non-breeding seasons (autumn). In spring, exposure to STI leads to increases in luteinizing hormone and testosterone, but not in autumn. These observations suggest that there are fundamental differences in the mechanisms driving neuroendocrine responses to STI between seasons. Microarrays, spotted with EST cDNA clones of zebra finch, were used to explore gene expression profiles in the hypothalamus after territorial aggression in two different seasons.Free-living territorial male song sparrows were exposed to either conspecific or heterospecific (control) males in an STI in spring and autumn. Behavioral data were recorded, whole hypothalami were collected, and microarray hybridizations were performed. Quantitative PCR was performed for validation. Our results show 262 cDNAs were differentially expressed between spring and autumn in the control birds. There were 173 cDNAs significantly affected by STI in autumn; however, only 67 were significantly affected by STI in spring. There were 88 cDNAs that showed significant interactions in both season and STI.Results suggest that STI drives differential genomic responses in the hypothalamus in the spring vs. autumn. The number of cDNAs differentially expressed in relation to season was greater than in relation to social interactions, suggesting major underlying seasonal effects in the hypothalamus which may determine the differential response upon social interaction. Functional pathway analyses implicated genes that regulate thyroid hormone action and neuroplasticity as targets of this neuroendocrine regulation

    Operative and middle-term results of cardiac surgery in nonagenarians: A bridge toward routine practice

    Get PDF
    Background: Age >90 years represents in many centers an absolute contraindication to cardiac surgery. Nonagenarians are a rapidly growing subset of the population posing an expanding clinical problem. To provide helpful information in regard to this complex decision, we analyzed the operative and 5-year results of coronary and valvular surgical procedures in these patients. Methods and Results: We retrospectively reviewed 127 patients aged ≥90 years who underwent cardiac surgery within our hospital group in the period 1998 to 2008. Kaplan-Meier and multiple logistic regression analyses were performed. A longer follow-up than most published studies and the largest series published thus far are presented. Mean age was 92 years (range, 90 to 103 years). Mean logistic EuroSCORE was 21.3±6.1. Sixty patients had valvular surgery (including 11 valve repairs), 49 patients had coronary artery bypass grafting, and 18 had valvular plus coronary artery bypass grafting surgery (55 left mammary artery grafts implanted). Forty-five patients (35.4%) were operated on nonelectively. Operative mortality was 13.4% (17 cases). Fifty-four patients (42.5%) had a complicated postoperative course. There were no statistically significant differences in the rate and type of complications between patient strata on the basis of type of surgery performed. Nonelective priority predicted a complicated postoperative course. Predictors of operative mortality were nonelective priority and previous myocardial infarction. Kaplan-Meier survival estimates at 5 years were comparable between patient groups on the basis of procedure performed. Conclusions: Although the rate of postoperative complications remains high, cardiac surgery in nonagenarians can achieve functional improvement at the price of considerable operative and follow-up mortality rates. Cardiac operations in these very elderly subjects are supported if appropriate selection is made and if the operation is performed earlier and electively. Our results should contribute to the development of guidelines for cardiac operations in nonagenarians. © 2010 American Heart Association. All rights reserved

    Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice

    Get PDF
    Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR’s role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.We thank Dr. P. Billuart for critical reading of the manuscript and suggestions during the course of the study, the NeuroImag platform at the IPNP and SFR Necker Imaging and histology platforms at the Imagine Institute for help with acquisition, the animal house facility (LEAT) and Animalliance for animal care. We are grateful to N. Ramezanidoraki and P. Billuart for initiating the first MEA experiment as well as members of the Pierani’s lab for technical support and helpful discussions.We thank Ann Kennedy for mouse profile (Zenodo, 2020) doi:10.5281/zenodo.3925921and for the mouse scheme in Fig. 3a, French Ministry of Research (BioSPc Doctoral school) (M.R.), Fondation pour la recherche médicale, FDT20201201037 (M.R.), Centre national de la recherche scientifique (CNRS) (A.P.), Agence Nationale de la Recherche, ANR-15-CE16-0003-01, ANR-19-CE16-0017-03 and ANR20-CE16-0001-01 (A.P.), Fondation pour la recherche médicale, Équipe FRM DEQ20130326521 and EQU201903007836) (A.P.), Agence Nationale de la Recherche under “Investissements d’avenir” program, ANR10-IAHU-01) (Imagine Institute), Fondation pour la recherche médicale (F.O.), AGEMED-INSERM (F.O.), NRJ for Neuroscience (F.O.), European Research Council (Consolidator grant #683154) (N. Rouach), European Research Council (Starting Grant #678250) (N. Rebola), Agence Nationale de la Recherche ANR-21-CE16-0020 and ANR-20-CE16-0009 (N. Rebola), and ANR-21-NEU2-0007-01 Eranet-Neuron ROSSINI project (A.P. and L.M.d.l.P.)

    Norepinephrine Controls Both Torpor Initiation and Emergence via Distinct Mechanisms in the Mouse

    Get PDF
    Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated reduction in circulating leptin, double mutant mice deficient in both leptin (ob/ob) and DBH (DBL MUT) were generated. Upon fasting, control and ob/ob mice entered torpor as assessed by telemetric core Tb acquisition. While fasting failed to induce torpor in Dbh −/− mice, leptin deficiency bypassed the requirement for NE, as DBL MUT mice readily entered torpor upon fasting. These data indicate that sympathetic activation of white fat and suppression of leptin is required for the onset of torpor in the mouse. Emergence from torpor was severely retarded in DBL MUT mice, revealing a novel, leptin-independent role for NE in torpor recovery. This phenotype was mimicked by administration of a β3 adrenergic receptor antagonist to control mice during a torpor bout. Hence, NE signaling via β3 adrenergic receptors presumably in brown fat is the first neurotransmitter-receptor system identified that is required for normal recovery from torpor

    The TLQP-21 Peptide Activates the G-Protein-Coupled Receptor C3aR1 via a Folding-upon-Binding Mechanism

    Get PDF
    TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled-receptor (GPCR) Complement-3a-Receptor1 (C3aR1). So far, the mechanisms of TLQP-21-induced receptor activation remained unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation, upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C-terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Interestingly, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions

    Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    Get PDF
    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes
    corecore