448 research outputs found

    Clinicopathological findings in cats tested for feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV)

    Get PDF
    This retrospective study aimed to evaluate the clinicopathological changes in a population of cats tested for feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), in an Italian Veterinary University Hospital, in the period between January 2002 and May 2016. During the period of 14 years, 1834 cats were tested, and of these 241/1834 (13.1%) were positive for FIV antibodies and 92/1834 (5%) cats were positive for FeLV antigen. These data confirm the presence of a high prevalence of these viruses on Italian territory. To the authors’ knowledge, this study describes findings that have never been evaluated before, such as iron status in retrovirus-infected cats and urinalysis in FeLV-positive cats. In this study, FIV-positive cats were more likely to have higher serum protein concentration and lower albumin-globulin ratio than other groups of cats. Lower urine specific gravity and higher urine protein to creatinine ratio were also detected for FIV-positive cats when compared with negative and healthy cats. FeLV-positive cats were more likely to have cytopenia, decreased haemoglobin, haematocrit and RBC compared with other groups of cats. The data obtained underline the importance of considering retroviral infections in the presence of a broad spectrum of risk factors and laboratory anomalies

    Novel Insights into RAD52’s Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies

    Get PDF
    Simple Summary Human RAD52 is a non-essential DNA/RNA-binding protein thought to be involved in many DNA repair mechanisms. Initially regarded as having a major role only in error-prone backup DNA repair mechanisms, RAD52 has recently gained attention because its inhibition induces synthetic lethality in cancer cells with an inactivated homologous recombination pathway (for error-free double-strand-break repair). RAD52 is thus a potential target to overcome resistance and unwanted side effects. Unfortunately, researchers still lack detailed structural and mechanistic information on RAD52 and have identified only a limited number of inhibitors, none of which are in the preclinical phase. This review summarizes the current knowledge on RAD52, highlighting the potential of its inhibition. This review also discusses the critical gaps in knowledge and sets out future directions for effective campaigns to discover RAD52 inhibitors. In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign

    Concomitant infections with canine parvovirus type 2 and intracellular tick-borne pathogens in two puppy dogs

    Get PDF
    In this report the concomitant infection with canine parvovirus type 2 (CPV-2), Hepatozoon canis and Ehrlichia canis in two puppy dogs from Southern Italy is described. Dogs were referred to a veterinary university hospital for the acute onset of lethargy and gastrointestinal signs. A complete clinical and clinicopathological evaluation was carried out and the multiple infection was confirmed by microscopic detection of inclusion bodies in peripheral blood smear, rapid immunoenzymatic tests, indirect fluorescent antibody tests, and molecular assays. Sequence analysis revealed that the CPV-2 identified belonged to the 2c variant and had amino acid residues in the predicted VP2 protein typical of "Asian-like" strains widespread in Asia and occasionally reported in Romania, Nigeria and Italy, particularly in the region of Sicily. Numerous monocytes were infected by both H. canis gamonts and E. canis morulae, suggesting that this co-infection is not accidental and that E. canis preferably infects those cells parasitized by H. canis. The clinical presentation of these animals was severe but supportive cares associated with early etiological therapy allowed a good prognosis. Movement of puppies from geographic areas where vector-borne pathogens are endemic must be carefully evaluated and core vaccinations and ectoparasite prevention treatments must be rigorously adopted

    Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines

    Get PDF
    The Metabolome and Transcriptome are mutually communicating within cancer cells, and this interplay is translated into the existence of quantifiable correlation structures between gene expression and metabolite abundance levels. Studying these correlations could provide a novel venue of understanding cancer and the discovery of novel biomarkers and pharmacological strategies, as well as laying the foundation for the prediction of metabolite quantities by leveraging information from the more widespread transcriptomics data. In the current paper, we investigate the correlation between gene expression and metabolite levels in the Cancer Cell Line Encyclopedia dataset, building a direct correlation network between the two molecular ensembles. We show that a metabolite/transcript correlation network can be used to predict metabolite levels in different samples and datasets, such as the NCI-60 cancer cell line dataset, both on a sample-by-sample basis and in differential contrasts. We also show that metabolite levels can be predicted in principle on any sample and dataset for which transcriptomics data are available, such as the Cancer Genome Atlas (TCGA)

    Novel sequence variants of viral hexon and fibre genes in two dogs with canine adenovirus type 1-associated disease

    Get PDF
    There is little information on sequence variation of canine adenovirus type 1 (CAdV-1), the aetiological agent of infectious canine hepatitis (ICH). This study reports hexon and fibre gene sequence variants of CAdV-1 in a dog with systemic ICH and a dog with the ocular form of the disease (\ue2\u80\u98blue eye\ue2\u80\u99) in Northern Italy in 2013. One of the sequence variants matched a CAdV-1 fox sequence previously detected in Italy

    The Transcriptome of SH-SY5Y at Single-Cell Resolution: A CITE-Seq Data Analysis Workflow

    Get PDF
    Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) is a recently established multimodal single cell analysis technique combining the immunophenotyping capabilities of antibody labeling and cell sorting with the resolution of single-cell RNA sequencing (scRNA-seq). By simply adding a 12-bp nucleotide barcode to antibodies (cell hashing), CITE-seq can be used to sequence antibody-bound tags alongside the cellular mRNA, thus reducing costs of scRNA-seq by performing it at the same time on multiple barcoded samples in a single run. Here, we illustrate an ideal CITE-seq data analysis workflow by characterizing the transcriptome of SH-SY5Y neuroblastoma cell line, a widely used model to study neuronal function and differentiation. We obtained transcriptomes from a total of 2879 single cells, measuring an average of 1600 genes/cell. Along with standard scRNA-seq data handling procedures, such as quality checks and cell filtering procedures, we performed exploratory analyses to identify most stable genes to be possibly used as reference housekeeping genes in qPCR experiments. We also illustrate how to use some popular R packages to investigate cell heterogeneity in scRNA-seq data, namely Seurat, Monocle, and slalom. Both the CITE-seq dataset and the code used to analyze it are freely shared and fully reusable for future research
    corecore