188 research outputs found

    Ground-state phase diagram of a half-filled one-dimensional extended Hubbard model

    Full text link
    The density-matrix renormalization group is used to study the phase diagram of the one-dimensional half-filled Hubbard model with on-site (U) and nearest-neighbor (V) repulsion, and hopping t. A critical line V_c(U) approximately equal to U/2 separates a Mott insulating phase from a charge-density-wave phase. The formation of bound charge excitations for V > 2t changes the phase transition from continuous to first order at a tricritical point U_t = 3.7t, V_t=2t. A frustrating effective antiferromagnetic spin coupling induces a bond-order-wave phase on the critical line V_c(U) for U_t < U < 7-8 t.Comment: 4 pages (REVTEX 4), 3 EPS figures, shorter abstract, text and references modifie

    Perturbation theory for optical excitations in the one-dimensional extended Peierls--Hubbard model

    Full text link
    For the one-dimensional, extended Peierls--Hubbard model we calculate analytically the ground-state energy and the single-particle gap to second order in the Coulomb interaction for a given lattice dimerization. The comparison with numerically exact data from the Density-Matrix Renormalization Group shows that the ground-state energy is quantitatively reliable for Coulomb parameters as large as the band width. The single-particle gap can almost triple from its bare Peierls value before substantial deviations appear. For the calculation of the dominant optical excitations, we follow two approaches. In Wannier theory, we perturb the Wannier exciton states to second order. In two-step perturbation theory, similar in spirit to the GW-BSE approach, we form excitons from dressed electron-hole excitations. We find the Wannier approach to be superior to the two-step perturbation theory. For singlet excitons, Wannier theory is applicable up to Coulomb parameters as large as half band width. For triplet excitons, second-order perturbation theory quickly fails completely.Comment: 32 pages, 12 figures, submtted to JSTA

    Charge and spin order in one-dimensional electron systems with long-range Coulomb interactions

    Full text link
    We study a system of electrons interacting through long--range Coulomb forces on a one--dimensional lattice, by means of a variational ansatz which is the strong--coupling counterpart of the Gutzwiller wave function. Our aim is to describe the quantum analogue of Hubbard's classical ``generalized Wigner crystal''. We first analyse charge ordering in a system of spinless fermions, with particular attention to the effects of lattice commensurability. We argue that for a general (rational) number of electrons per site nn there are three regimes, depending on the relative strength VV of the long--range Coulomb interaction (as compared to the hopping amplitude tt). For very large VV the quantum ground state differs little from Hubbard's classical solution, for intermediate to large values of VV we recover essentially the Wigner crystal of the continuum model, and for small VV the charge modulation amounts to a small--amplitude charge--density wave. We then include the spin degrees of freedom and show that in the Wigner crystal regimes (i.e. for large VV) they are coupled by an antiferromagnetic kinetic exchange JJ, which turns out to be smaller than the energy scale governing the charge degrees of freedom. Our results shed new light on the insulating phases of organic quasi--1D compounds where the long--range part of the interaction is unscreened, and magnetic and charge orderings coexist at low temperatures.Comment: 11 pages, 7 figures, accepted for publication on Phys. Rev.

    Optical excitations of Peierls-Mott insulators with bond disorder

    Full text link
    The density-matrix renormalization group (DMRG) is employed to calculate optical properties of the half-filled Hubbard model with nearest-neighbor interactions. In order to model the optical excitations of oligoenes, a Peierls dimerization is included whose strength for the single bonds may fluctuate. Systems with up to 100 electrons are investigated, their wave functions are analyzed, and relevant length-scales for the low-lying optical excitations are identified. The presented approach provides a concise picture for the size dependence of the optical absorption in oligoenes.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Quantum global vortex strings in a background field

    Full text link
    We consider quantum global vortex string correlation functions, within the Kalb-Ramond framework, in the presence of a background field-strength tensor and investigate the conditions under which this yields a nontrivial contribution to those correlation functions. We show that a background field must be supplemented to the Kalb-Ramond theory, in order to correctly describe the quantum properties of the vortex strings. The explicit form of this background field and the associated quantum vortex string correlation function are derived. The complete expression for the quantum vortex creation operator is explicitly obtained. We discuss the potential applicability of our results in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera

    Charge density wave and quantum fluctuations in a molecular crystal

    Get PDF
    We consider an electron-phonon system in two and three dimensions on square, hexagonal and cubic lattices. The model is a modification of the standard Holstein model where the optical branch is appropriately curved in order to have a reflection positive Hamiltonian. Using infrared bounds together with a recent result on the coexistence of long-range order for electron and phonon fields, we prove that, at sufficiently low temperatures and sufficiently strong electron-phonon coupling, there is a Peierls instability towards a period two charge-density wave at half-filling. Our results take into account the quantum fluctuations of the elastic field in a rigorous way and are therefore independent of any adiabatic approximation. The strong coupling and low temperature regime found here is independent of the strength of the quantum fluctuations of the elastic field.Comment: 15 pages, 1 figur

    Comparison of Variational Approaches for the Exactly Solvable 1/r-Hubbard Chain

    Full text link
    We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for half-filled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the~1/r1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. We conclude that neither Hartree-Fock nor Jastrow-type wave functions yield reliable predictions on zero temperature phase transitions in low-dimensional, i.e., charge-spin separated systems.Comment: 23 pages + 3 figures available on request; LaTeX under REVTeX 3.

    Nonlinear Optical Response of Spin Density Wave Insulators

    Full text link
    We calculate the third order nonlinear optical response in the Hubbard model within the spin density wave (SDW) mean field ansatz in which the gap is due to onsite Coulomb repulsion. We obtain closed-form analytical results in one dimension (1D) and two dimension (2D), which show that nonlinear optical response in SDW insulators in 2D is stronger than both 3D and 1D. We also calculate the two photon absorption (TPA) arising from the stress tensor term. We show that in the SDW, the contribution from stress tensor term to the low-energy peak corresponding to two photon absorption becomes identically zero if we consider the gauge invariant current properly.Comment: we use \psfrag in figur

    The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model

    Full text link
    We have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Comment: 12 pages, 7 figures; final version, pdf-ReVTeX; corrected typos in reference; submitted to Journal of Physics: Condensed Matte
    • …
    corecore