367 research outputs found

    Thermocapillary effects in driven dewetting and self-assembly of pulsed laser-irradiated metallic films

    Get PDF
    In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and Marangoni numbers, etc. are elucidated. It is observed that the film stability is promoted for such parameters variations that increase the heat production in the film. In the numerical simulations the impacts of different irradiation modes are investigated. In particular, we obtain that in the interference heating mode the spatially periodic irradiation results in a spatially periodic film rupture with the same, or nearly equal period. The 2D model qualitatively reproduces the results of the experimental observations of a film stability and spatial ordering of a re-solidified nanostructures

    Dynamics of Strongly Deformed Polymers in Solution

    Full text link
    Bead spring models for polymers in solution are nonlinear if either the finite extensibility of the polymer, excluded volume effects or hydrodynamic interactions between polymer segments are taken into account. For such models we use a powerful method for the determination of the complete relaxation spectrum of fluctuations at {\it steady state}. In general, the spectrum and modes differ significantly from those of the linear Rouse model. For a tethered polymer in uniform flow the differences are mainly caused by an inhomogeneous distribution of tension along the chain and are most pronounced due to the finite chain extensibility. Beyond the dynamics of steady state fluctuations we also investigate the nonlinear response of the polymer to a {\em large sudden change} in the flow. This response exhibits several distinct regimes with characteristic decay laws and shows features which are beyond the scope of single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure

    Contact line motion for partially wetting fluids

    Full text link
    We study the flow close to an advancing contact line in the limit of small capillary number. To take into account wetting effects, both long and short-ranged contributions to the disjoining pressure are taken into account. In front of the contact line, there is a microscopic film corresponding to a minimum of the interaction potential. We compute the parameters of the contact line solution relevant to the matching to a macroscopic problem, for example a spreading droplet. The result closely resembles previous results obtained with a slip model

    Force balance in canonical ensembles of static granular packings

    Full text link
    We investigate the role of local force balance in the transition from a microcanonical ensemble of static granular packings, characterized by an invariant stress, to a canonical ensemble. Packings in two dimensions admit a reciprocal tiling, and a collective effect of force balance is that the area of this tiling is also invariant in a microcanonical ensemble. We present analytical relations between stress, tiling area and tiling area fluctuations, and show that a canonical ensemble can be characterized by an intensive thermodynamic parameter conjugate to one or the other. We test the equivalence of different ensembles through the first canonical simulations of the force network ensemble, a model system.Comment: 9 pages, 9 figures, submitted to JSTA

    Bulk and Interfacial Shear Thinning of Immiscible Polymers

    Full text link
    Nonequilibrium molecular dynamics simulations are used to study the shear thinning behavior of immiscible symmetric polymer blends. The phase separated polymers are subjected to a simple shear flow imposed by moving a wall parallel to the fluid-fluid interface. The viscosity begins to shear thin at much lower rates in the bulk than at the interface. The entire shear rate dependence of the interfacial viscosity is consistent with a shorter effective chain length ss^* that also describes the width of the interface. This ss^* is independent of chain length NN and is a function only of the degree of immiscibility of the two polymers. Changes in polymer conformation are studied as a function of position and shear rate.Shear thinning correlates more closely with a decrease in the component of the radius of gyration along the velocity gradient than with elongation along the flow. At the interface, this contraction of chains is independent of NN and consistent with the bulk behavior for chains of length ss^*. The distribution of conformational changes along chains is also studied. Central regions begin to stretch at a shear rate that decreases with increasing NN, while shear induced changes at the ends of chains are independent of NN.Comment: 8 pages, 8 figure

    Angoricity and compactivity describe the jamming transition in soft particulate matter

    Full text link
    The application of concepts from equilibrium statistical mechanics to out-of-equilibrium systems has a long history of describing diverse systems ranging from glasses to granular materials. For dissipative jammed systems-- particulate grains or droplets-- a key concept is to replace the energy ensemble describing conservative systems by the volume-stress ensemble. Here, we test the applicability of the volume-stress ensemble to describe the jamming transition by comparing the jammed configurations obtained by dynamics with those averaged over the ensemble as a probe of ergodicity. Agreement between both methods suggests the idea of "thermalization" at a given angoricity and compactivity. We elucidate the thermodynamic order of the jamming transition by showing the absence of critical fluctuations in static observables like pressure and volume. The approach allows to calculate observables such as the entropy, volume, pressure, coordination number and distribution of forces to characterize the scaling laws near the jamming transition from a statistical mechanics viewpoint.Comment: 27 pages, 13 figure

    Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents

    Full text link
    The elastic interactions between objects embedded in a nematic liquid crystal are usually caused by the average distorsion-rather than by the fluctuations-of the nematic orientational field. We argue that for sufficiently small particles, the nematic-mediated interaction originates purely from the fluctuations of the nematic director. This Casimir interaction decays as d^(-6), d being the distance between the particles, and it dominates van der Waals interactions close to the isotropic-to-nematic transition. Considering the nematic as a polymer solvent, we show that the onset of this Casimir interaction at the isotropic-to-nematic transition can discontinuously induce the collapse of a flexible polymer chain from the swollen state to the globular state, without crossing the Theta-point.Comment: 6 pages, 1 figur

    Dewetting of Glassy Polymer Films

    Full text link
    Dynamics and morphology of hole growth in a film of power hardening viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At short-times the growth is exponential and depends on the initial hole size. At long-times, for n > 1/3, the growth is exponential with a different exponent. However, for n < 1/3, the hole growth slows; the hole radius approaches an asymptotic value as time tends to infinity. The rim shape is highly asymmetric, the height of which has a power law dependence on the hole radius (exponent close to unity for 0.25 < n < 0.4). The above results explain recent intriguing experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe

    Dissipation in Dynamics of a Moving Contact Line

    Full text link
    The dynamics of the deformations of a moving contact line is studied assuming two different dissipation mechanisms. It is shown that the characteristic relaxation time for a deformation of wavelength 2π/k2\pi/|k| of a contact line moving with velocity vv is given as τ1(k)=c(v)k\tau^{-1}(k)=c(v) |k|. The velocity dependence of c(v)c(v) is shown to drastically depend on the dissipation mechanism: we find c(v)=c(v=0)2vc(v)=c(v=0)-2 v for the case when the dynamics is governed by microscopic jumps of single molecules at the tip (Blake mechanism), and c(v)c(v=0)4vc(v)\simeq c(v=0)-4 v when viscous hydrodynamic losses inside the moving liquid wedge dominate (de Gennes mechanism). We thus suggest that the debated dominant dissipation mechanism can be experimentally determined using relaxation measurements similar to the Ondarcuhu-Veyssie experiment [T. Ondarcuhu and M. Veyssie, Nature {\bf 352}, 418 (1991)].Comment: REVTEX 8 pages, 9 PS figure

    Single polymer dynamics in elongational flow and the confluent Heun equation

    Full text link
    We investigate the non-equilibrium dynamics of an isolated polymer in a stationary elongational flow. We compute the relaxation time to the steady-state configuration as a function of the Weissenberg number. A strong increase of the relaxation time is found around the coil-stretch transition, which is attributed to the large number of polymer configurations. The relaxation dynamics of the polymer is solved analytically in terms of a central two-point connection problem for the singly confluent Heun equation.Comment: 9 pages, 6 figure
    corecore