3,490 research outputs found

    Elemental Abundances in NGC 3516

    Full text link
    We present RGS data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extreme low state. The spectrum shows numerous emission lines including the H-like lines of C, N and O and the He-like lines of N, O and Ne. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models, we find that N is overabundant compared to C, O and Ne by at least a factor of 2.5. We suggest this is the result of secondary production of N in intermediate mass stars, and indicative of the history of star formation in NGC 3516.Comment: 19 pages, 3 color figures. ApJ in pres

    Theoretical studies of photoexcitation and ionization in H_2O

    Get PDF
    Theoretical studies are reported of the complete dipole excitation and ionization spectrum in H_2O employing Franck–Condon and static‐exchange approximations. Large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground‐state equilibrium geometry, and previously devised moment‐theory techniques are employed in constructing the continuum oscillator‐strength densities from the calculated spectra. Detailed comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact–excitation cross sections, and dipole (e, 2e)/(e, e+ion) and synchrotron‐radiation studies of partial‐channel photoionization cross sections. The various calculated excitation series in the outer‐valence (1b(^−1)_1, 3a(^−1)_1, 1b(^−1)_2) region are found to include contributions from valence‐like 2b_2 (σ*) and 4a_1(Îł*) virtual orbitals, as well as appropriate nsa_1, npa_1, nda_1, npb_1, npb_2, ndb_1, ndb_2, and nda_2 Rydberg states. Transition energies and intensities in the ∌7 to 19 eV interval obtained from the present studies are seen to be in excellent agreement with the measured photoabsorption cross section, and to provide a basis for detailed spectral assignments. The calculated (1b(^−1)_1)X(^ 2)B_1, (3a_1(^−1))^2A_1, and (1b_2(^−1))(^2)B_2 partial‐channel cross sections are found to be largely atomic‐like and dominated by 2p→kd components, although the 2b_2(σ*) orbital gives rise to resonance‐like contributions just above threshold in the 3a_1→kb_2 and 1b_2→kb_2 channels. It is suggested that the latter transition couples with the underlying 1b_1→kb_1 channel, accounting for a prominent feature in the recent high‐resolution synchrotron‐radiation measurements. When this feature is taken into account, the calculations of the three outer‐valence channels are in excellent accord with recent synchrotron‐radiation and dipole (e, 2e) photoionization cross‐sectional measurements. The calculated inner‐valence (2a_1(^−1)) cross section is also in excellent agreement with corresponding measured values, although proper account must be taken of the appropriate final‐state configuration‐mixing effects that give rise to a modest failure of the Koopmans approximation, and to the observed broad PES band, in this case. Finally, the origins of the various spectral features present in the measured 1a_1 oxygen K‐edge electron energy‐loss profile in H_2O are seen to be clarified fully by the present calculations

    Physical Conditions in the Narrow-Line Region of Markarian 3. II. Photoionization Modeling Results

    Full text link
    We have examined the physical conditions in the narrow-line region (NLR) of the Seyfert 2 galaxy Markarian 3, using long-slit spectra obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph and photoionization models. We find three components of photoionized gas in the NLR. Two of these components, characterized by emission lines such as [NeV] 3426 and [OIII] 5007, lie within the envelope of the bi-conical region described in our previous kinematic study. A component of lower ionization gas, in which lines such as [OII] 3727 arise, is found to lie outside the bi-cone. Each of these components is irradiated by a power-law continuum which is attenuated by intervening gas, presumably closer to the central source. The radiation incident upon the low ionization gas, external to the bi-cone, is much more heavily absorbed. These absorbers are similar to the intrinsic UV and X-ray absorbers detected in many Seyfert 1 galaxies, which suggests that the collimation of the ionizing radiation occurs in a circumnuclear wind, rather than a thick, molecular torus. We estimate the mass for the observed NLR emitting gas to be 2 million solar-masses. It is likely that Markarian 3 acquired this gas through an on-going interaction with the spiral galaxy UGC 3422.Comment: 47 pages, 7 figures; accepted for publication in Ap

    New Indicators for AGN Power: The Correlation Between [O IV] lambda 25.89 micron and Hard X-ray Luminosity for Nearby Seyfert Galaxies

    Full text link
    We have studied the relationship between the [O IV] lambda 25.89 micron emission line luminosities, obtained from Spitzer spectra, the X-ray continua in the 2-10 keV band, primarily from ASCA, and the 14-195 keV band obtained with the SWIFT/Burst Alert Telescope (BAT), for a sample of nearby (z < 0.08) Seyfert galaxies. For comparison, we have examined the relationship between the [O III] 5007, the 2-10 keV and the 14-195 keV luminosities for the same set of objects. We find that both the [O IV] and [O III] luminosities are well-correlated with the BAT luminosities. On the other hand, the [O III] luminosities are better-correlated with 2-10 keV luminosities than are those of [O IV]. When comparing [O IV] and [O III] luminosities for the different types of galaxies, we find that the Seyfert 2's have significantly lower [O III] to [O IV] ratios than the Seyfert 1's. We suggest that this is due to more reddening of the narrow line region (NLR) of the Seyfert 2's. Assuming Galactic dust to gas ratios, the average amount of extra reddening corresponds to a hydrogen column density of ~ few times 10^21 cm^-2, which is a small fraction of the X-ray absorbing columns in the Seyfert 2's. The combined effects of reddening and the X-ray absorption are the probable reason why the [O III] versus 2-10 keV correlation is better than the [O IV] versus 2-10 keV, since the [O IV] emission line is much less affected by extinction. Overall, we find the [O IV] to be an accurate and truly isotropic indicator of the power of the AGN. This suggests that it can be useful in deconvolving the contribution of the AGN and starburst to the spectrum of Compton-thick and/or X-ray weak sources.Comment: Accepted for publication in the Astrophysical Journal. 31 pages, 6 figures, 4 table

    Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-infrared Emission Lines

    Get PDF
    The shape of the spectral energy distribution of active galaxies in the EUV--soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 mm/[NeIII], [Ne V]24.32mm/[O IV]25.89mm and [O IV] 25.89mm/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV--soft X-ray slope, alpha_i, to be between 1.5 -- 2.0 and derive a best fit of alpha_i ~ 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T_{BB}=10^{5.18} K to 10^{5.7} K, suggesting that the peak of this component spans a large range of energies extending from ~ lambda 600A to lambda 1900A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between ~ lambda 700--1000A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.Comment: Accepted for publication in The Astrophysical Journal. 11 Figure

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-ray Absorbers

    Full text link
    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra/HETGS data obtained 2002 May, as part of a program which included simultaneous UV spectra using HST/STIS and FUSE. NGC 4151 was in a relatively low flux state during the observations reported here, although roughly 2.5 times as bright in the 2 --10 keV band as during a Chandra observation in 2000. The soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower-ionization species of these elements. The former is too highly ionized to be radiatively accelerated in a sub-Eddington source such as NGC 4151. We find that the lower ionization gas had a column density a factor of ~ 3 higher during the 2000 observation. If due to bulk motion, we estimate that this component must have a velocity of more than 1250 km/sec transverse to our line-of-sight. We suggest that these results are consistent with a magneto-hydrodynamic flow.Comment: 42 pages, 14 figures. Accepted for publication in The Astrophysical Journa

    On the Nature of Intrinsic Absorption in Reddened Seyfert 1 Galaxies

    Get PDF
    We discuss the origin of the ``dusty lukewarm absorber'', which we previously identified in the reddened Seyfert 1 galaxies NGC 3227 and Akn 564. This absorber is characterized by saturated UV absorption lines (C IV, N V) near the systemic velocity of the host galaxy, and is likely responsible for reddening both the continuum and the emission lines (including those from the narrow-line region) from these Seyferts. From a large sample of Seyfert 1 galaxies, we find that continuum reddening (as measured by UV color) tends to increase with inclination of the host galaxy. Furthermore, reddened, inclined Seyfert galaxies observed at moderate to high spectral resolution all show evidence for dusty lukewarm absorbers. We suggest that these absorbers lie in the plane of the host galaxy at distances > 100 pc from the nucleus, and are physically distinct from the majority of intrinsic absorbers that are outflowing from the nucleus.Comment: 14 pages, including 2 figures, accepted for publication in the Astrophysical Journal (Letters

    Radial Velocity Offsets Due to Mass Outflows and Extinction in Active Galactic Nuclei

    Full text link
    We present a study of the radial velocity offsets between narrow emission lines and host galaxy lines (stellar absorption and H I 21-cm emission) in Seyfert galaxies with observed redshifts less than 0.043. We find that 35% of the Seyferts in the sample show [O III] emission lines with blueshifts with respect to their host galaxies exceeding 50 km/s, whereas only 6% show redshifts this large, in qualitative agreement with most previous studies. We also find that a greater percentage of Seyfert 1 galaxies show blueshifts than Seyfert 2 galaxies. Using HST/STIS spatially-resolved spectra of the Seyfert 2 galaxy NGC 1068 and the Seyfert 1 galaxy NGC 4151, we generate geometric models of their narrow-line regions (NLRs) and inner galactic disks, and show how these models can explain the blueshifted [O III] emission lines in collapsed STIS spectra of these two Seyferts. We conclude that the combination of mass outflow of ionized gas in the NLR and extinction by dust in the inner disk (primarily in the form of dust spirals) is primarily responsible for the velocity offsets in Seyfert galaxies. More exotic explanations are not needed. We discuss the implications of this result for the velocity offsets found in higher redshift AGN.Comment: 25 pages, 7 figures, accepted for publication in the Astrophysical Journa
    • 

    corecore