318 research outputs found
Chapter 13: Interacting with interviewers in text and voice interviews on smartphones. Appendix 13
Appendix A: Example human text and voice interchange that includes clarification.
Appendix B: Coding Manual
Appendix A13C.1 (Data) attached belo
Rate of Corneal Collagen Crosslinking Redo in Private Practice: Risk Factors and Safety
Objective. To report the rate of progression of keratectasia after primary crosslinking (CXL) and evaluate the safety and efficiency of CXL redo. Materials and Methods. We conducted a retrospective analysis of the patients who underwent CXL between 2010 and 2013 at the Beirut Eye Specialist Hospital, Lebanon. Progression of keratectasia was based on the presence of an increase in maximum keratometry of 1.00 D, a change in the map difference between two consecutive topographies of 1.00 D, a deterioration of visual acuity, or any change in the refraction. Primary and redo CXL were done using the same protocol. Results. Among the 221 eyes of 130 patients who underwent CXL, 7 eyes (3.17%) of five patients met the criteria of progression. All patients reported a history of allergic conjunctivitis and eye rubbing and progressed within 9 to 48 months. No complications were noted and all patients were stable 1 year after CXL redo. Conclusion. Allergic conjunctivitis and eye rubbing were the only risk factors associated with keratoconus progression after CXL. A close followup is thus mandatory, even years after the procedure. CXL redo seems to be a safe and efficient technique to halt the progression after a primary CXL
Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents
Peripheral nerve blocks of wrist and finger flexors can increase hand opening in chronic hemiparetic stroke
IntroductionHand opening is reduced by abnormal wrist and finger flexor activity in many individuals with stroke. This flexor activity also limits hand opening produced by functional electrical stimulation (FES) of finger and wrist extensor muscles. Recent advances in electrical nerve block technologies have the potential to mitigate this abnormal flexor behavior, but the actual impact of nerve block on hand opening in stroke has not yet been investigated.MethodsIn this study, we applied the local anesthetic ropivacaine to the median and ulnar nerve to induce a complete motor block in 9 individuals with stroke and observed the impact of this block on hand opening as measured by hand pentagonal area. Volitional hand opening and FES-driven hand opening were measured, both while the arm was fully supported on a haptic table (Unloaded) and while lifting against gravity (Loaded). Linear mixed effect regression (LMER) modeling was used to determine the effect of Block.ResultsThe ropivacaine block allowed increased hand opening, both volitional and FES-driven, and for both unloaded and loaded conditions. Notably, only the FES-driven and Loaded condition’s improvement in hand opening with the block was statistically significant. Hand opening in the FES and Loaded condition improved following nerve block by nearly 20%.ConclusionOur results suggest that many individuals with stroke would see improved hand-opening with wrist and finger flexor activity curtailed by nerve block, especially when FES is used to drive the typically paretic finger and wrist extensor muscles. Such a nerve block (potentially produced by aforementioned emerging electrical nerve block technologies) could thus significantly address prior observed shortcomings of FES interventions for individuals with stroke
Important performance characteristics in elite clay and grass court tennis match-play.
The performance characteristics of elite tennis match-play differ depending on court surface. However, the performance characteristics (e.g. aces, first serve points won, forced errors) most associated with success on different surfaces are currently unknown. With three weeks typically separating Roland Garros and Wimbledon, the transition from clay to grass courts, whereby players must adapt their game style between surfaces, is crucial to understand. Using the recently validated PWOL method, we analysed 984 singles matches across the 2016 and 2017 Roland Garros and Wimbledon tournaments, to identify the most important performance characteristics in clay and grass court tennis. Results revealed that points won of 0-4 shot rally length, first serve points won and baseline points won were most strongly associated with success for both sexes; serve-related performance characteristics (aces, double faults and average first serve speed) were among the least associated with success. Furthermore, winning short points (points of 0-4 shots) was more closely associated with success than winning medium-length (5-8 shots) and long points (9+ shots). To be representative of match-play, findings suggest that players should afford sufficient practise time to short rallies and point-ending strategies during the clay and grass court seasons, rather than over-emphasising long rallies
Skeletal growth in class II malocclusion from childhood to adolescence: does the profile straighten?
BACKGROUND
There is relatively little appreciation of the changes in maxillary-mandibular relationships occurring during adolescence among subjects with normal and increased overjet. The aim of this study was to assess differences in changes in maxillo-mandibular relationships during the adolescent growth period based on the presence of a normal ( 4 mm) overjet in childhood. Our hypothesis was that there is no difference in the change of the A point, nasion, B point (ANB) angle during growth between these two overjet groups. Lateral cephalograms were obtained from 65 subjects taken from the American Association of Orthodontists Foundation (AAOF) Craniofacial Growth Legacy Collections Project. Cephalograms were obtained at ages 7-10 (T0) and 14-17 (T1) with allocation into two groups based on baseline overjet (> 4 mm: group 1, 2-4 mm: group 2). Random effects linear regression was used to account for multiple within -patient measurements with dependent variables including antero-posterior skeletal pattern (based on sella, nasion, A point (SNA); sella, nasion, B point (SNB); and ANB angles).
RESULTS
We included a similar number of males (n = 34; 52.3%) and females (n = 31; 47.7%). The mean ANB was higher at baseline in group 1 (5.42, SD 2.16°) than in group 2 (3.08, SD 1.91°). The hypothesis was rejected as the ANB angle reduced by 1.92° more in the larger overjet group with the association being statistically significant after accounting for age and gender (P  4 mm overjet group compared to the 2-4 mm group (0.857°, P = 0.271; 95% CI - 0.669 to 2.383). The SNB angle increased by 1.15° more in the higher overjet group but there was only weak evidence of an association (P = 0.086; 95% CI - 2.464 to 0.164).
CONCLUSIONS
A slight straightening of the facial profile was observed in both groups with a statistically significant greater reduction in ANB arising in the group with larger baseline overjet. This translated into a marginal reduction in the overjet in this group
Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)
Sapphire (single-crystal Al2O3) is a representative Earth material and is
used as a window and/or anvil in shock experiments. Pressure, for example, at
the core-mantle boundary is about 130 gigapascals (GPa). Defects induced by
100-GPa shock waves cause sapphire to become opaque, which precludes measuring
temperature with thermal radiance. We have measured wave profiles of sapphire
crystals with several crystallographic orientations at shock pressures of 16,
23, and 86 GPa. At 23 GPa plastic-shock rise times are generally quite long
(~100 ns) and their values depend sensitively on the direction of shock
propagation in the crystal lattice. The long rise times are probably caused by
the high strength of inter-atomic interactions in the ordered three-dimensional
sapphire lattice. Our wave profiles and recent theoretical and laser-driven
experimental results imply that sapphire disorders without significant shock
heating up to about 400 GPa, above which Al2O3 is amorphous and must heat. This
picture suggests that the characteristic shape of shock compression curves of
many Earth materials at 100 GPa pressures is caused by a combination of entropy
and temperature.Comment: 12 pages, 4 figure
Protein adsorption on preadsorbed polyampholytic monolayers
The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account.Peer reviewe
Does facial soft tissue protect against zygomatic fractures?: results of a finite element analysis
Introduction: Zygomatic fractures form a major entity in craniomaxillofacial traumatology. Few studies have dealt with biomechanical basics and none with the role of the facial soft tissues. Therefore this study should investigate, whether facial soft tissue plays a protecting role in lateral midfacial trauma
- …