663 research outputs found

    On the k-Boundedness for Existential Rules

    Full text link
    The chase is a fundamental tool for existential rules. Several chase variants are known, which differ on how they handle redundancies possibly caused by the introduction of nulls. Given a chase variant, the halting problem takes as input a set of existential rules and asks if this set of rules ensures the termination of the chase for any factbase. It is well-known that this problem is undecidable for all known chase variants. The related problem of boundedness asks if a given set of existential rules is bounded, i.e., whether there is a predefined upper bound on the number of (breadth-first) steps of the chase, independently from any factbase. This problem is already undecidable in the specific case of datalog rules. However, knowing that a set of rules is bounded for some chase variant does not help much in practice if the bound is unknown. Hence, in this paper, we investigate the decidability of the k-boundedness problem, which asks whether a given set of rules is bounded by an integer k. We prove that k-boundedness is decidable for three chase variants, namely the oblivious, semi-oblivious and restricted chase.Comment: 20 pages, revised version of the paper published at RuleML+RR 201

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{−1,1}n→{−1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(n⋅polylog⁥(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3⋅d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1−Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant ÎŽ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1−ή)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant ÎŽ>0\delta > 0, an Ω(n1−ή)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2−o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur

    Type-Based Detection of XML Query-Update Independence

    Get PDF
    This paper presents a novel static analysis technique to detect XML query-update independence, in the presence of a schema. Rather than types, our system infers chains of types. Each chain represents a path that can be traversed on a valid document during query/update evaluation. The resulting independence analysis is precise, although it raises a challenging issue: recursive schemas may lead to infer infinitely many chains. A sound and complete approximation technique ensuring a finite analysis in any case is presented, together with an efficient implementation performing the chain-based analysis in polynomial space and time.Comment: VLDB201

    Meta-model Pruning

    Get PDF
    Large and complex meta-models such as those of Uml and its profiles are growing due to modelling and inter-operability needs of numerous\ud stakeholders. The complexity of such meta-models has led to coining\ud of the term meta-muddle. Individual users often exercise only a small\ud view of a meta-muddle for tasks ranging from model creation to construction\ud of model transformations. What is the effective meta-model that represents\ud this view? We present a flexible meta-model pruning algorithm and\ud tool to extract effective meta-models from a meta-muddle. We use\ud the notion of model typing for meta-models to verify that the algorithm\ud generates a super-type of the large meta-model representing the meta-muddle.\ud This implies that all programs written using the effective meta-model\ud will work for the meta-muddle hence preserving backward compatibility.\ud All instances of the effective meta-model are also instances of the\ud meta-muddle. We illustrate how pruning the original Uml metamodel\ud produces different effective meta-models

    Definitions by Rewriting in the Calculus of Constructions

    Get PDF
    The main novelty of this paper is to consider an extension of the Calculus of Constructions where predicates can be defined with a general form of rewrite rules. We prove the strong normalization of the reduction relation generated by the beta-rule and the user-defined rules under some general syntactic conditions including confluence. As examples, we show that two important systems satisfy these conditions: a sub-system of the Calculus of Inductive Constructions which is the basis of the proof assistant Coq, and the Natural Deduction Modulo a large class of equational theories.Comment: Best student paper (Kleene Award
    • 

    corecore