1,137 research outputs found

    Spin-dependent Hedin's equations

    Full text link
    Hedin's equations for the electron self-energy and the vertex were originally derived for a many-electron system with Coulomb interaction. In recent years it has been increasingly recognized that spin interactions can play a major role in determining physical properties of systems such as nanoscale magnets or of interfaces and surfaces. We derive a generalized set of Hedin's equations for quantum many-body systems containing spin interactions, e.g. spin-orbit and spin-spin interactions. The corresponding spin-dependent GW approximation is constructed.Comment: 5 pages, 1 figur

    Effects of disorder on the vortex charge

    Full text link
    We study the influence of disorder on the vortex charge, both due to random pinning of the vortices and due to scattering off non-magnetic impurities. In the case when there are no impurities present, but the vortices are randomly distributed, the effect is very small, except when two or more vortices are close by. When impurities are present, they have a noticeable effect on the vortex charge. This, together with the effect of temperature, changes appreciably the vortex charge. In the case of an attractive impurity potential the sign of the charge naturally changes.Comment: 10 pages, 16 figures. Accepted in Phys. Rev.

    Energy spectrum and effective mass using a non-local 3-body interaction

    Full text link
    We recently proposed a nonlocal form for the 3-body induced interaction that is consistent with the Fock space representation of interaction operators but leads to a fractional power dependence on the density. Here we examine the implications of the nonlocality for the excitation spectrum. In the two-component weakly interacting Fermi gas, we find that it gives an effective mass that is comparable to the one in many-body perturbation theory. Applying the interaction to nuclear matter, it predicts a large enhancement to the effective mass. Since the saturation of nuclear matter is partly due to the induced 3-body interaction, fitted functionals should treat the effective mass as a free parameter, unless the two- and three-body contributions are determined from basic theory.Comment: 7 pages, 1 figure; V2 has a table showing the 3-body energies for two phenomenological energy-density functional

    Mechanism of d_{x^2-y^2}-wave superconductivity based on doped hole induced spin texture in high T_c cuprates

    Get PDF
    A mechanism of d_{x^2-y^2}-wave superconductivity is proposed for the high-T_c cuprates based on a spin texture with non-zero topological density induced by doped holes through Zhang-Rice singlet formation. The pairing interaction arises from the magnetic Lorentz force like interaction between the holes and the spin textures. The stability of the pairing state against the vortex-vortex interaction and the Coulomb repulsion is examined. The mechanism suggests appearance of a p-wave pairing component by introducing anisotropy in the CuO_2 plane.Comment: 9 pages, 3 figures; added references, corrected minor error

    Coupling of hydrodynamics and quasiparticle motion in collective modes of superfluid trapped Fermi gases

    Full text link
    At finite temperature, the hydrodynamic collective modes of superfluid trapped Fermi gases are coupled to the motion of the normal component, which in the BCS limit behaves like a collisionless normal Fermi gas. The coupling between the superfluid and the normal components is treated in the framework of a semiclassical transport theory for the quasiparticle distribution function, combined with a hydrodynamic equation for the collective motion of the superfluid component. We develop a numerical test-particle method for solving these equations in the linear response regime. As a first application we study the temperature dependence of the collective quadrupole mode of a Fermi gas in a spherical trap. The coupling between the superfluid collective motion and the quasiparticles leads to a rather strong damping of the hydrodynamic mode already at very low temperatures. At higher temperatures the spectrum has a two-peak structure, the second peak corresponding to the quadrupole mode in the normal phase.Comment: 14 pages; v2: major changes (effect of Hartree field included

    Isospin Constraints on the Parametric Coupling Model for Nuclear Matter

    Full text link
    We make use of isospin constraints to study the parametric coupling model and the properties of asymmetric nuclear matter. Besides the usual constraints for nuclear matter - effective nucleon mass and the incompressibility at saturation density - and the neutron star constraints - maximum mass and radius - we have studied the properties related with the symmetry energy. These properties have constrained to a small range the parameters of the model. We have applied our results to study the thermodynamic instabilities in the liquid-gas phase transition as well as the neutron star configurations.Comment: 11 pages, 10 figure

    Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    A hydrodynamic description is used to study the normal modes of a vortex in a zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the circulating superfluid velocity far from the vortex core provides a small perturbation that splits the originally degenerate normal modes of a vortex-free condensate. The relative frequency shifts are small in all cases considered (they vanish for the lowest dipole mode with |m|=1), suggesting that the vortex is stable. The Bogoliubov equations serve to verify the existence of helical waves, similar to those of a vortex line in an unbounded weakly interacting Bose gas. In the large-condensate (small-core) limit, the condensate wave function reduces to that of a straight vortex in an unbounded condensate; the corresponding Bogoliubov equations have no bound-state solutions that are uniform along the symmetry axis and decay exponentially far from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We have altered the material in Secs. 3B and 4 in connection with the normal modes that have |m|=1. Our present treatment satisfies the condition that the fundamental dipole mode of a condensate with (or without) a vortex should have the bare frequency $\omega_\perp

    Superconducting transition temperature of Pb nanofilms: Impact of the thickness-dependent oscillations of the phonon mediated electron-electron coupling

    Full text link
    To date, several experimental groups reported measurements of the thickness dependence of T_c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T_c-oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T_c-oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab

    Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas

    Full text link
    Corrections to the zero-temperature Thomas-Fermi description of a dilute interacting condensed Bose-Einstein gas confined in an isotropic harmonic trap arise due to the presence of a boundary layer near the condensate surface. Within the Bogoliubov approximation, the various contributions to the ground-state condensate energy all have terms of order R^{-4}ln R and R^{-4}, where R is the number-dependent dimensionless condensate radius in units of the oscillator length. The zero-order hydrodynamic density-fluctuation amplitudes are extended beyond the Thomas-Fermi radius through the boundary layer to provide a uniform description throughout all space. The first-order correction to the excitation frequencies is shown to be of order R^{-4}.Comment: 12 pages, 2 figures, revtex. Completely revised discussion of the boundary-layer corrections to collective excitations, and two new figures added. To appear in Phys. Rev. A (October, 1998

    The s-wave pion-nucleus optical potential

    Get PDF
    We calculate the s-wave part of the pion-nucleus optical potential using a unitarized chiral approach that has been previously used to simultaneously describe pionic hydrogen and deuterium data as well as low energy pi N scattering in the vacuum. This energy dependent model allows for additional isoscalar parts in the potential from multiple rescattering. We consider Pauli blocking and pion polarization in an asymmetric nuclear matter environment. Also, higher order corrections of the pi N amplitude are included. The model can accommodate the repulsion required by phenomenological fits, though the theoretical uncertainties are bigger than previously thought. At the same time, we also find an enhancement of the isovector part compatible with empirical determinations.Comment: 31 pages, 27 figure
    corecore