5,262 research outputs found

    A New Channel for the Detection of Planetary Systems Through Microlensing: II. Repeating Events

    Full text link
    In the companion paper we began the task of systematically studying the detection of planets in wide orbits (a>1.5REa > 1.5 R_E) via microlensing surveys. In this paper we continue, focusing on repeating events. We find that, if all planetary systems are similar to our own Solar System, reasonable extensions of the present observing strategies would allow us to detect 3-6 repeating events per year along the direction to the Bulge. Indeed, if planetary systems with multiple planets are common, then future monitoring programs which lead to the discovery of thousands of stellar-lens events will likely discover events in which several different planets within a single system serve as lenses, with light curves exhibiting multiple repetitions. In this paper we discuss observing strategies to maximize the discovery of all wide-orbit planet-lens events. We also compare the likely detection rates of planets in wide orbits to those of planets located in the zone for resonant lensing. We find that, depending on the values of the planet masses and stellar radii of the lensed sources (which determine whether or not finite source size is important), and also on the sensitivity of the photometry used by observers, the detection of planets in wide orbits may be the primary route to the discovery of planets via microlensing. We also discuss how the combination of resonant and wide-orbit events can help us to learn about the distribution of planetary system properties (S 6.1). In addition, by determining the fraction of short-duration events due to planets, we indirectly derive information about the fraction of all short-duration events that may be due to low-mass MACHOs (S 6.2).Comment: 51 pages, 7 figures. To be published in the Astrophysical Journal, 20 February 1999. This completes the introduction to the discovery of planets in wide orbits begun in astro-ph/9808075, also to appear in ApJ on 20 February 199

    A New Channel for the Detection of Planetary Systems Through Microlensing: I. Isolated Events Due to Planet Lenses

    Get PDF
    We propose and evaluate the feasibility of a new strategy to search for planets via microlensing. This new strategy is designed to detect planets in "wide" orbits, i.e., with orbital separation, aa greater than ∌1.5RE\sim 1.5 R_E. Planets in wide orbits may provide the dominant channel for the microlensing discovery of planets, particularly low-mass (e.g., Earth-mass) planets. This paper concentrates on events in which a single planet serves as a lens, leading to an isolated event of short duration. We point out that a distribution of events due to lensing by stars with wide-orbit planets is necessarily accompanied by a distribution of shorter- duration events. The fraction of events in the latter distribution is proportional to the average value of q\sqrt{q}, where qq is the ratio between \pl and stellar masses. The position of the peak or peaks also provides a measure of the mass ratios typical of planetary systems. We study detection strategies that can optimize our ability to discover isolated short-duration events due to lensing by planets, and find that monitoring employing sensitive photometry is particularly useful. If planetary systems similar to our own are common, even modest changes in detection strategy should lead to the discovery of a few isolated events of short duration every year. We therefore also address the issue of the contamination due to stellar populations of any microlensing signal due to low-mass MACHOs. We describe how, even for isolated events of short duration, it will be possible to test the hypothesis that the lens was a planet instead of a low-mass MACHO, if the central star of the planetary system contributes a measurable fraction of the baseline flux.Comment: 37 pages, 6 figure. To be published in the Astrophysical Journal. This is part one of a series of papers on microlensing by planetary systems containing wide-orbit planets; the series represents a reorganization and extension of astro-ph/971101

    Applicability of shape parameterizations for giant dipole resonance in warm and rapidly rotating nuclei

    Full text link
    We investigate how well the shape parameterizations are applicable for studying the giant dipole resonance (GDR) in nuclei, in the low temperature and/or high spin regime. The shape fluctuations due to thermal effects in the GDR observables are calculated using the actual free energies evaluated at fixed spin and temperature. The results obtained are compared with Landau theory calculations done by parameterizing the free energy. We exemplify that the Landau theory could be inadequate where shell effects are dominating. This discrepancy at low temperatures and high spins are well reflected in GDR observables and hence insists on exact calculations in such cases.Comment: 10 pages, 2 figure

    Nonclassical Light in Interferometric Measurements

    Get PDF
    It is shown that the even and odd coherent light and other nonclassical states of light like superposition of coherent states with different phases may replace the squeezed light in interferometric gravitational wave detector to increase its sensitivity. (Contribution to the Second Workshop on Harmonic Oscillator, Cocoyoc, Mexico, March 1994)Comment: 8 pages,LATEX,preprint of Naples University, INFN-NA-IV-94/30,DSF-T-94/3

    Transverse Lepton Polarization in Polarized W Decays

    Get PDF
    Calculations of transverse polarization of leptons in the decay W→lÎœW\rightarrow l\nu with polarized WW's are presented. Planned accelerators will produce enough WW's for observation of the Standard Model contributions to this polarization. One loop corrections to the polarization are given; these are too small to be seen at presently available WW sources. The exchange of Majorons will contribute to these polarizations; these may provide limits on the couplings of these particles to leptons.Comment: 8 pages set in RevTex III and 4 uucompressed figures. This revised version studies polarization effects due to the exchange of charged Majoron doublet

    Strategic Networking for Online Success

    Full text link
    The growth of online social networks and the decreasing effectiveness of traditional marketing have lead to a large interest in social networks. For an appropriate application of new marketing approaches marketers have to understand the impact of interactions and relationships among network members on their individual outcome and network popularity in order to use online social networks effectively in marketing. In this study we analyze networking behavior of music artists for promoting their music. Our sample consists of a set of 480 music artists who actively operate online social networks for personal success on two independent online social network platforms at the same time. Personal network information on both platforms is tracked monthly over a period of six months. Applying a count data approach we relate well-established egocentric network measures to online success. Our results indicate that online success is determined by the social network structure and networking activities of the music artists rather than by their outside popularity. Most importantly, the drivers of online success are not limited to the size of the of the artist’s personal network. The findings of our study provide several insights into the use of personal online social networks for marketing products and services

    About the connection between the CℓC_{\ell} power spectrum of the Cosmic Microwave Background and the Γm\Gamma_{m} Fourier spectrum of rings on the sky

    Full text link
    In this article we present and study a scaling law of the mΓmm\Gamma_m CMB Fourier spectrum on rings which allows us (i) to combine spectra corresponding to different colatitude angles (e.g. several detectors at the focal plane of a telescope), and (ii) to recover the ClC_l power spectrum once the Γm\Gamma_m coefficients have been measured. This recovery is performed numerically below the 1% level for colatitudes Θ>80∘\Theta> 80^\circ degrees. In addition, taking advantage of the smoothness of the ClC_l and of the Γm\Gamma_m, we provide analytical expressions which allow to recover one of the spectrum at the 1% level, the other one being known.Comment: 8 pages, 8 figure

    A Fuzzy Approach for Feature Evaluation and Dimensionality Reduction to Improve the Quality of Web Usage Mining Results

    Get PDF
    The explosive growth in the information available on the Web has necessitated the need for developing Web personalization systems that understand user preferences to dynamically serve customized content to individual users. Web server access logs contain substantial data about the accesses of users to a Web site. Hence, if properly exploited, the log data can reveal useful information about the navigational behaviour of users in a site. In order to reveal the information about user preferences from, Web Usage Mining is being performed. Web Usage Mining is the application of data mining techniques to web usage log repositories in order to discover the usage patterns that can be used to analyze the user’s navigational behavior. WUM contains three main steps: preprocessing, knowledge extraction and results analysis. During the preprocessing stage, raw web log data is transformed into a set of user profiles. Each user profile captures a set of URLs representing a user session. Clustering can be applied to this sessionized data in order to capture similar interests and trends among users’ navigational patterns. Since the sessionized data may contain thousands of user sessions and each user session may consist of hundreds of URL accesses, dimensionality reduction is achieved by eliminating the low support URLs. Very small sessions are also removed in order to filter out the noise from the data. But direct elimination of low support URLs and small sized sessions may results in loss of a significant amount of information especially when the count of low support URLs and small sessions is large. We propose a fuzzy solution to deal with this problem by assigning weights to URLs and user sessions based on a fuzzy membership function. After assigning the weights we apply a "Fuzzy c-Mean Clustering" algorithm to discover the clusters of user profiles. In this paper, we describe our fuzzy set theoretic approach to perform feature selection (or dimensionality reduction) and session weight assignment. Finally we compare our soft computing based approach of dimensionality reduction with the traditional approach of direct elimination of small sessions and low support count URLs. Our results show that fuzzy feature evaluation and dimensionality  reduction results in better performance and validity indices for the discovered clusters
    • 

    corecore