18 research outputs found

    The On-TIME User InterfaceInformation Systems: People, Organizations, Institutions, and Technologies

    No full text
    This demonstration concerns the visual user interface of the On-TIME system, a task-centered information management system, whose aim is to actively participate to and support the user tasks. The design of a user friendly interface is one of the key challenges that needs to be addressed for the success of On-TIME. Being On-TIME based on the use of a so-called Personal Ontology to provide a semantic account to user’s personal data, the interface has to allow the user to easily browse the ontology. On the other hand, it has to address the management of tasks. This requires to both suggest tasks that the user might be willing to perform, and to support her while executing tasks. We present a typical user scenario in order to illustrate a possible interaction with the On-TIME interface, and discuss some preliminary user evaluation

    Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device

    No full text
    Strategies that simultaneously target energy/power performance, sustainable manufacturing processes, valorization of green raw materials, and easy recycling of supercapacitors are urgently needed. Today, efforts have to be devoted not only to improve system performance but also to address the sustainability of materials and devices manufacturing and recyclability. Specifically, pullulan is herein proposed as a novel bio-degradable binder and separator for green supercapacitors. It is processed by electrospinning from aqueous solutions, therefore overcoming issues related to conventional membrane processing by organic solvents. Furthermore, combining the water-soluble, biodegradable pullulan with a hydrophobic ionic liquid electrolyte brings about a novel approach for end-of-life management of devices. The use of pullulan is demonstrated in a supercapacitor with carbon electrodes obtained from pepper-seeds waste and 1-Ethyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide as the electrolyte. The supercapacitor delivers up to 5 kW kg 121 specific power and 27.8 Wh kg 121 specific energy at 3.2 V, that well compare with conventional electrical double-layer capacitor performance with the added value of being eco-friendly and cheap

    Functional separators for the batteries of the future

    No full text
    Lithium/sulfur batteries are one of the most promising technologies for the next-generation batteries. However, this technology suffers from several problems mainly related to the instability of metallic lithium and to the polysulfides (PS) shuttle. An approach to address such issues is the design of new separators or the modification of existing commercial ones. The use of hybrid membranes is here proposed to improve the performance of Li metal anode and sulfur cathode. Composite separators are obtained by electrospinning or drop-casting a polymer solution of polyvinylidenefluoride (PVdF) containing graphene oxide (GO) on a polyolefin commercial Celgard 2300 separator. This is the first time that a thin layer of electrospun PVdF/GO composite is applied to a polyolefin separator for the use in Li metal-based batteries. We demonstrate that electrospinning is an effective method to obtain a thin polymer layer of PVdF/GO. The electrospun layer improves the wettability of the separator; it is beneficial to the growth of \u201csoft\u201d dendrite on Li anode and has a positive effect on the PS shuttle process. The casted layer featuring a higher GO content is also effective in increasing the separator wettability, although with a minor effect on Li interphase

    From the web of data to a world of action

    No full text
    This paper takes as its premise that the web is a place of action, not just information, and that the purpose of global data is to serve human needs. The paper presents several component technologies, which together work towards a vision where many small micro-applications can be threaded together using automated assistance to enable a unified and rich interaction. These technologies include data detector technology to enable any text to become a start point of semantic interaction; annotations for web-based services so that they can link data to potential actions; spreading activation over personal ontologies, to allow modelling of context; algorithms for automatically inferring 'typing' of web-form input data based on previous user inputs; and early work on inferring task structures from action traces. Some of these have already been integrated within an experimental web-based (extended) bookmarking tool, Snip!t, and a prototype desktop application On Time, and the paper discusses how the components could be more fully, yet more openly, linked in terms of both architecture and interaction. As well as contributing to the goal of an action and activity-focused web, the work also exposes a number of broader issues, theoretical, practical, social and economic, for the Semantic Web. © 2010 Elsevier B.V. All rights reserved

    High performance Joint European Torus (JET) plasmas for deuterium-tritium operation with the MkII divertor

    No full text

    JET results with the new pumped divertor and implications for ITER

    No full text
    This paper presents an overview of results of the 1994/95 experimental campaign on JET with the new pumped divertor and draws implications for ITER in the areas of detached and radiative divertor plasmas, the use of beryllium as a divertor target the material, the confinement properties of discharges with the same dimensionless parameters (except for the dimensionless Larmor radius) as ITER and the effect of varying the toroidal magnetic field ripple in the ITER relevant range. Discharges with high fusion performance at high current, in steady-state with ELMs and in the ELM-free hot-ion H-mode, are also reported. Limits to operations are discussed and projections to D-T performance are made

    High performance Joint European Torus (JET) plasmas for deuterium-tritium operation with the MkII divertor

    No full text
    Planned experiments in the Joint European Torus [Plasma Physics and Controlled Fusion Research, Proceedings, 13th International Conference, Washington, D.C., 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 27] (JET) with deuterium-tritium (D-T) plasmas require high fusion performance for alpha-particle heating studies and for investigation of isotope dependence in conditions relevant to the International Thermonuclear Experimental Reactor [Plasma Phys. Controlled Fusion 37, A19 (1995)]. In deuterium plasmas, the highest neutron rates have been obtained in the hot-ion high-confinement mode (H mode) which is ultimately limited by magnetohydrodynamic (MHD) phenomena when the pressure gradient approaches ideal ballooning and kink stability limits in the vicinity of the edge transport barrier. Results are reported confirming the MkII divertor's increased closure and pumping in this regime, progress in understanding the MHD-related termination is discussed, and the use of ion cyclotron resonance heating (ICRH) in combination with high-power neutral beams to increase the neutron yield is described. In separate experiments internal transport barriers have been established through careful programming of the current ramp and heating waveforms, and neutron emission comparable with the best hot-ion II-modes achieved. Steady-state II-mode discharges exhibiting edge localized modes (ELMs) in reactor-like configurations and conditions have been demonstrated, including cases in which relevant dimensionless parameter values are preserved, ready also for testing in D-T. (C) 1997 American institute of Physics

    JET results with the new pumped divertor and implications for ITER

    No full text
    corecore