16,058 research outputs found

    Ice formation on a smooth or rough cold surface due to the impact of a supercooled water droplet

    Get PDF
    Ice accretion is considered in the impact of a supercooled water droplet on a smooth or rough solid surface, the roughness accounting for earlier icing. In this theoretical investigation the emphasis and novelty lie in the full nonlinear interplay of the droplet motion and the growth of the ice surface being addressed for relatively small times, over a realistic range of Reynolds numbers, Froude numbers, Weber numbers, Stefan numbers and capillary underheating parameters. The Prandtl number and the kinetic under-heating parameter are taken to be order unity. The ice accretion brings inner layers into play forcibly, affecting the outer flow. (The work includes viscous effects in an isothermal impact without phase change, as a special case, and the differences between impact with and without freezing.) There are four main findings. First, the icing dynamically can accelerate or decelerate the spreading of the droplet whereas roughness on its own tends to decelerate spreading. The interaction between the two and the implications for successive freezings are found to be subtle. Second, a focus on the dominant physical effects reveals a multi-structure within which restricted regions of turbulence are implied. The third main finding is an essentially parabolic shape for a single droplet freezing under certain conditions. Fourth is a connection with a body of experimental and engineering work and with practical findings to the extent that the explicit predictions here for ice-accretion rates are found to agree with the experimental range.

    Bound states in weakly disordered spin ladders

    Full text link
    We study the appearance of bound states in the spin gap of spin-1/2 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation in the strong-coupling limit and compared with numerical results. Furthermore, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.Comment: 2 pages, 1 figure. Proceedings of SCES'04, to appear in Physica

    A program to develop a high-energy density primary battery with a minimum of 200 watt hours per pound of total battery weight Final report, Jul. 1964 - Sep. 1967

    Get PDF
    Electrolytes, anodes, and cathodes for high energy density battery with 200 watt hours per pound of total battery weigh

    Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Get PDF
    K. Woo, M. Le Vaillant, T. van Nus, and especially A. Wesphal, J. Schultner and I. Dorresteijn, assisted with field work, often under unpleasant conditions. K. Wauthier was instrumental in wrestling the gamma counter into submission. P. Redman and C. Hambly conducted the isotopic analyses. K. Scott and K. Campbell provided the FoxBox. K.H.E. benefited from a Natural Sciences and Engineering Research Council (NSERC) Vanier Scholarship, Association of Canadian Universities for Northern Studies Garfield Weston Northern Studies Award and the Arctic Institute of North America Jennifer Robinson Scholarship. Research support came from Bird Studies Canada/Society of Canadian Ornithologists James Baillie Award, Animal Behavior Society Research Grant, American Ornithologists’ Union Research Grant, Frank Chapman Research Grant, the Waterbird Society Nisbet Grant and NSERC Discovery Grants to J.F.H. and W.G.A. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.Peer reviewedPublisher PD

    Electrical properties of a-antimony selenide

    Full text link
    This paper reports conduction mechanism in a-\sbse over a wide range of temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity measured as a function of temperature shows semiconducting behaviour with activation energy Δ\DeltaE= 0.42 eV. Thermally induced changes in the electrical and dielectric properties of a-\sbse have been examined. The a.c. conductivity in the material has been explained using modified CBH model. The band conduction and single polaron hopping is dominant above room temperature. However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]

    A mixed-mode shell-model theory for nuclear structure studies

    Get PDF
    We introduce a shell-model theory that combines traditional spherical states, which yield a diagonal representation of the usual single-particle interaction, with collective configurations that track deformations, and test the validity of this mixed-mode, oblique basis shell-model scheme on 24^{24}Mg. The correct binding energy (within 2% of the full-space result) as well as low-energy configurations that have greater than 90% overlap with full-space results are obtained in a space that spans less than 10% of the full space. The results suggest that a mixed-mode shell-model theory may be useful in situations where competing degrees of freedom dominate the dynamics and full-space calculations are not feasible.Comment: 20 pages, 8 figures, revtex 12p

    Richardson's pair diffusion and the stagnation point structure of turbulence

    Get PDF
    DNS and laboratory experiments show that the spatial distribution of straining stagnation points in homogeneous isotropic 3D turbulence has a fractal structure with dimension D_s = 2. In Kinematic Simulations the time exponent gamma in Richardson's law and the fractal dimension D_s are related by gamma = 6/D_s. The Richardson constant is found to be an increasing function of the number of straining stagnation points in agreement with pair duffusion occuring in bursts when pairs meet such points in the flow.Comment: 4 pages; Submitted to Phys. Rev. Let

    Spontaneous Violation of the CP Symmetry in the Higgs Sector of the Next-to-Minimal Supersymmetric Model

    Full text link
    The spontaneous violation of the CP symmetry in the next-to-minimal supersymmetric standard Model (NMSSM) is investigated. It is found that the spontaneous violation of the CP symmetry can occur in the Higgs sector of the NMSSM for a wide region of the parameter space of the model, at the 1-loop level where the radiative corrections due to the top quark and scalar-top quark loops are found to generate the scalar-pseudoscalar mixings between the two Higgs doublets of the NMSSM. In our model, we assume that the masses of the left-handed and the right-handed scalar-top quarks are not degenerate. And we investigate our model anaytically: We derive analytical formulae of the 1-loop mass matrix for the neutral Higgs bosons. We calculate the upper bound on the lightest neutral Higgs boson mass under the assumption. It is found to be about 140 GeV for our choice of parameter values in the presence of the spontaneous violation of the CP symmetry in the NMSSM. Thus, the possibility of the spontaneous violation of the CP symmetry is not completely ruled out in the Higgs sector of the NMSSM if the masses of the left-handed and the right-handed scalar-top quarks are not degenerate. Further, the phenomenology of the KK-Kˉ{\bar K} mixing within the context of our model is studied. The lower bound on CP violating phase in the KK-Kˉ{\bar K} mixing is found to increase if either tanβ\tan\beta decreases or AtA_t increases.Comment: 21 pages, 5 figures, To appear in Phys. Rev.
    corecore