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Abstract. Ice accretion is considered in the impact of a supercooled water droplet on a smooth
or rough solid surface, the roughness accounting for earlier icing. In this theoretical investi-
gation the emphasis and novelty lie in the full nonlinear interplay of the droplet motion and
the growth of the ice surface being addressed for relatively small times, over a realistic range
of Reynolds numbers, Froude numbers, Weber numbers, Stefan numbers and capillary under-
heating parameters. The Prandtl number and the kinetic under-heating parameter are taken
to be order unity. The ice accretion brings inner layers into play forcibly, affecting the outer
flow. (The work includes viscous effects in an isothermal impact without phase change, as a
special case, and the differences between impact with and without freezing.) There are four
main findings. First, the icing dynamically can accelerate or decelerate the spreading of the
droplet whereas roughness on its own tends to decelerate spreading. The interaction between
the two and the implications for successive freezings are found to be subtle. Second, a focus
on the dominant physical effects reveals a multi-structure within which restricted regions of
turbulence are implied. The third main finding is an essentially parabolic shape for a single
droplet freezing under certain conditions. Fourth is a connection with a body of experimental
and engineering work and with practical findings to the extent that the explicit predictions here
for ice-accretion rates are found to agree with the experimental range.
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1. Introduction

The high-speed impact of a two-dimensional supercooled cylindrical water
droplet or small drop on a dry, possibly rough, but essentially flat, solid sur-
face is investigated in the current paper. In addition to considering the flow,
which is governed by inertial, viscous, gravitational and capillary effects,
characterised by the Reynolds number, the Froude number and the Weber
number, we have other parameters to account for relating to the heat transfer
and temperature dependence of the material properties. Moreover we have
phase changes, which here are assumed to be confined to solidification of
the drop, avoiding the phenomena of vaporisation and substrate melting. The
fluid mechanics of drop impact with surfaces is of importance in a variety of
different fields. For example high-speed impacts with solids can cause severe
erosion, whilst engineering applications include spray cooling and ink-jet
printing.
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Ice formation during an impact or a succession of impacts can readily
lead to complex phenomena due to flow interacting with heat transfer and
phase changes. This leads to our focus. A range of potentially relevant fea-
tures is discussed first in the introduction below and then the focus is drawn
to major aspects in anticipation of the work within the present paper.

1.1. ICING AND IMPACTS

A supercooled water droplet can exist because its transition to its stable solid
phase first requires energy to nucleate. The formation of a microscopic amount
of the solid phase necessarily involves the creation of a high free-energy
interface between the two phases. In principle, in the absence of external
perturbations, a water droplet can be continued to be cooled until eventually
localized thermally-driven fluctuations cause so-called homogeneous nucle-
ation [1]. In practice, and at much greater temperatures, the necessary energy
is provided by impurity particles (dust) or by contact with a solid object, so-
called heterogeneous nucleation, albeit the droplet is still supercooled by tens
of degrees.

Consequently clouds may contain liquid water of several grams per cu-
bic metre in the form of supercooled droplets for prolonged periods. Large
supercooled water droplets (typically up to a radius 2.5 mm) only exist at
warmer ambient temperatures but relatively small cloud droplets may fre-
quently exist in the supercooled state down to −200C and less frequently as
low as −30 to −350C. Indeed very small water droplets have been observed
to remain supercooled down to −400C [2]. Thus freezing rain, which is ef-
fectively a supercooled cloud of very large droplets, is unlikely to exist below
−200C, whereas freezing drizzle, which has droplets with smaller diameters
50-400µm, could exist at lower temperatures.

Our main concern is with regard to aircraft icing [3, 4] and comparing
with experiments where possible. When an aircraft is flying through clouds
at an ambient temperature below freezing, supercooled water droplets sus-
pended in the cloud can impact and accrete ice on the forward-facing parts
of the aircraft, most crucially about the leading edge of a wing, on the tail
and around the engine intakes. Ice build-up can have a significant impact on
the aircraft aerodynamics, through loss of lift and increase in drag, possibly
leading to loss of life. Usually such areas are equipped with de-icing tech-
nology such as using warm bleed air from engine compressors or forcing
freezing point depressant fluid (normally glycerine and water) out of porous
panels. Although such measures can evaporate impinging water droplets or
melt accreted ice, there is the potential risk of runback ice forming further
downstream due to a refreezing of the ice-water mixture on unprotected areas.

Recent studies on the freezing of water droplets indicate a two-stage
freezing process, a fast recalescence stage in which supercooling drives ki-
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Ice formation due to impact 3

netic crystal growth followed by a slower stage governed by the heat transfer
rate [5]. For a droplet placed on a flat solid surface [6] identify the fast stage
with a moving front rather than an instantaneous occurrence. Moreover, for
superhydrophobic dry (unsaturated flow) surfaces with a sufficiently strong
shear gas flow, this fast stage can emanate from a homogeneous nucleation
at the upstream gas/liquid interface. Finally here [7] show that supercooled
droplets impacting on inclined, exceptionally superhydrophobic, dry surfaces
can bounce-off without freezing.

However, for a humid environment and a surface that is in general con-
taminated by ice crystals, impacting droplets will freeze either partially or
completely, from a heterogeneous nucleation at the solid/liquid interface. The
latent heat of fusion released from the water which freezes, and which tends to
warm up the impacted surface, is countered by the convective heat loss to the
ambient air. For cold ambient temperatures, low airspeed and low liquid water
content (LWC) the droplets freeze completely on impact. They tend to form
a white opaque accretion, called rime ice, which is relatively streamlined but
with a much greater surface roughness than the wing. At ambient tempera-
tures closer to freezing, at high airspeeds, or for clouds with high LWC, only
part of the liquid water freezes on impact, the remainder running aft along
the surface. It is possible for this water to freeze at aft locations, producing
localized thickening of the ice profile, giving rise to horned ice shapes, on
both the upper and lower surfaces. This accretion tends to be translucent in
appearance and is termed glaze ice. Other possible reasons for the formation
of ice further downstream on the wing may be due to splashing and re-
entrainment of droplets into the air flow. Another key issue is the unknown
role of surface roughness caused say by previous freezings and its interplay
with ice growth, in the overall droplet dynamics.

The impact of a single, initially spherical, liquid droplet or drop with
a surface has received much attention since the studies of [8] and [9]. The
behaviour of a liquid droplet after impact depends on whether the surface
is hydrophobic or hydrophillic, rough or smooth and whether it is solid or
liquid. Even for the case of a dry solid smooth horizontal plane surface and
a normal impact velocity there are several stages [10] resulting in either
bouncing, spreading or splashing. The initial kinematic compressive stage,
where the drop resembles a truncated sphere, appears to depend only on the
impact velocity and diameter. This is followed by a spreading stage where
a thin jet (lamella) is ejected from the base of the drop forming a rapidly
expanding thinning film bounded by a thicker rim. During this stage the drop
changes from a sphere to a disc-like shape and is increasingly subject to
viscous forces and, to a lesser extent, influenced by surface tension, surface
roughness and wettability. For a sufficiently large impact speed the drop will
splash, which includes separation of tiny drops from the wave crests of the
unstable rim (prompt splash) but usually refers to detachment of the lamella
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from the surface where it forms a crown from which tiny droplets are ejected
(corona splash). See [11] concerning splashes as well as parametric roughness
effects. For low to moderate impact velocities, at least in the non-wetting
case, the contact diameter attains and decreases from a maximum, dewetting
the surface. This recoil can either be sufficiently strong to cause the drop to
bounce off the surface or else the drop equilibrates to some constant diameter,
possibly after further expansions and contractions. Finally we should mention
[12]’s experiments on impacts onto extremely inclined surfaces, in which
asymmetry and sliding enter the problem.

Most theoretical investigations of drop impact focus on the later spread-
ing stage of the thinning liquid film and are concerned with predicting the
maximum spreading diameter or the splashing threshold. For comprehensive
reviews of the subject see [13], [14]. Following [15] the usual approach is an
energy balance equating the known energy of the impacting drop with that
of the lamella (kinetic, potential, surface and dissipated energy). To obtain
the spread factor as a function of time the estimate for the kinetic energy
requires assumptions for both the velocity field and the drop shape. However
at maximum spread, where the kinetic energy is minimal or comparatively
low, only the dissipated energy is not well-defined and requires approxima-
tion. Typical of this approach are the studies by [16], [17], [18], [19] in which
simple algebraic expressions for the maximum spreading diameter in terms of
the impact Weber and Reynolds numbers are obtained. In contrast, [20], [21],
and [22] argue that the conventional energy balance fails to take into account
the substantial volume of fluid in the rim. They contend that, for an inertia
dominated impact at high Reynolds and Weber numbers, the evolution of the
expanding lamella in later stages of spreading is described by a universal
flow. This, in contrast to the above, leads to predictions for the residual film
thickness and the maximum spreading diameter independent of the impact
parameters. See also [23]. Recently, [24] extended the analysis to cover heat
transfer and phase transition by finding a self-similar solution to the Navier-
Stokes and energy equations, albeit for the case of equal densities and heat
capacities for both phases.

A link with the freezing of supercooled droplets is provided by the
theoretical study of the impact and solidification of liquid metal drops on
cooled substrates. This is also a highly complicated solidification free-surface
problem, albeit that the liquid is superheated rather than supercooled. The
energy-balance approach of [15] was adapted by [25], [26] to yield a simple
splat-quench solidification model (see also [27] and [28]). In order to im-
prove the agreement with experiment for impact problems involving rapid
solidification (large Stefan number), some investigators ([29]) have used un-
dercooling to drive the initial solidification.
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1.2. SPECIFIC ICING MODELS

The simulation of ice accretion on aerofoils starts with a computation of
the airflow, followed by successive computation of water droplet trajectories,
collection efficiency and finally the thermodynamic balance to determine the
ice profile. The airflow computation could be from a Navier-Stokes solver, or
a coupled inviscid flow solver with an integral boundary layer correction. Al-
though the inviscid solver could be based on solution to the Euler equations,
it is more likely to tackle potential flow using either panel methods ([30],
[31]) or finite-difference methods [32]. The water droplet trajectories and
collection efficiency calculations are detailed in [3] while the ice-prediction
typically follows from the energy-balance approach of [34], involving kinetic
heating, convective cooling, latent heat of freezing and several sensible heat
terms. Finally, the roughness which develops on ice-covered surfaces con-
trols the boundary-layer flow which, in turn, affects droplet efficiency and
heat transfer. Thus the modelling of surface roughness, as described by [35],
[31], is of much importance. Further [35] provide time-dependent results to
compare both with experiments and our own analysis.

Very much related to the above are the theoretical investigations of [36],
[37], [38], [39], and [40]. A small aspect ratio and reduced Reynolds number
allow the fluid flow to be modelled by lubrication theory. Analytical solutions
for the velocity components yield a fourth-order nonlinear partial differential
equation for the free surface which in turn reduces to a very simple result
for rime icing (no liquid layer). In essence this is similar to the triple-deck
approach of [41] although there the resulting nonlinear boundary layer sys-
tem requires numerical evaluation. Of more relevance to our study is the
numerical and experimental investigation by [42] into the oblique impact and
freezing of a supercooled large droplet (SLD) onto a thin layer of water. A se-
ries of Navier-Stokes simulations show the formation and break-up of ejecta
jets seen in experiments. To simulate ice formation, a thin array of triangular
seed crystals, at the freezing temperature, is initially set at the bottom of the
water layer. The isolated crystals first grow into each other and then into the
supercooled droplet water. The ice layer modifies the flow of the droplet and
layer water and so affects the form of splash.

The present theoretical study is concerned primarily with events near the
instant of impact. The seminal work on such droplet impacts and the related
issue of water-entry problems was carried out by [43]. [44] identified the
importance of compressibility and the significance of the shock wave formed
upon impact. They argued that for high-speed impacts the time at which the
shock wave overtakes the contact point is the start of the spreading stage
(see [45]). For lower-speed impacts this description of the lamella origin is
rejected by [46] who identify the importance of ambient air pressure, argu-
ing that initially the droplet spreads on a thin sheet of air. Above a critical
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impact velocity, they suggest the lamella is ejected before surface contact
which, subsequently, deflects the lamella upwards, causing the corona splash
described above. Other analytical work includes [47], [48], [49], [50], [51],
and [52] who studied water entry problems at low deadrise angles and other
impact problems. Droplet impacts into water layers have been presented by
[53], [54], while [55], [56] also derived many of the interesting air-cushioning
results found independently in [46]. Recent work includes impacts on rough
surfaces by [57] and skimming and rebounding by [58].

It is also worthwhile to consider another classical heat diffusion process,
namely the unconstrained planar solidification of a pure substance from an
undercooled melt initially at a temperature T ∗∞. If T ∗

f is the equilibrium fusion
temperature, then the process is parameterised by the Stefan number St , a
dimensionless ratio of the temperature difference 1T ∗ = T ∗

f − T ∗∞ > 0 and
the latent heat at the fusion temperature. The classical Stefan formulation, see
[59] and [60], of a square-root diffusion controlled growth with a sharp front
held at the equilibrium fusion temperature T ∗

f breaks down for rapid solidifi-
cation, there being no solution for St ≥ 1 [61]. This is due to a reduction in
the temperature from that of equilibrium at the interface, or so-called kinetic
undercooling. One way to resolve this is the phase-field approach, see [62],
which allows for a finite thickness of the front. A second approach is to retain
a sharp front but incorporate the effects of interfacial kinetics by relating the
drop in fusion temperature from equilibrium to the rate of solidification. The
change in the solidification temperature is accompanied by a corresponding
change in the latent heat, which is a function of the interfacial temperature,
implying entropy production at the interface when there is a difference in the
specific heat between the two phases. The simplest case, a linear relationship,
is appropriate to molecularly rough or unfacetted interfaces. There have been
many studies in this area including notably [63], [64], [65], [66], [67], [68]
and [69]. Not all of the above consider the effects of density and specific heat
jumps upon change of phase or even allow for the corresponding change in
the latent heat. Some consider only the single phase process in isolation from
the temperature distribution of the substrate.

1.3. THE PRESENT STUDY

The prime focus here is on ice growth, surface roughness and relevant viscous
effects, with the surface roughness representing pre-existing icing. For sim-
plicity in our study we shall consider only rough surfaces that are symmetrical
about the single initial point of contact. Compressible and acoustic effects are
neglected, partly again for simplicity but also in line with the [70] recommen-
dations. In fact with the application to aircraft icing and the main physical
effects foremost in mind the influences of air need not be accommodated in a
first model and the droplet is considered to move through a void. In addition
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for convenience we shall fix the temperature variation within the accreted
ice. The Reynolds and Weber numbers are assumed large, so in particular
as a first approximation we ignore the effects of surface tension. It might
appear that we can also treat the droplet as inviscid. However viscous effects
cannot be fully ignored if the effects of the water droplet freezing are to be
considered. The interplay between the droplet and the growing ice surface
adds to the apparent novelty of the present work. Moreover, the model we
use deals with small time scales in early build-up of ice for a single droplet
and then addresses by extrapolation many droplets by means of their frozen
roughness effect.

The plan of the paper is as follows. In §2 the interaction between ice
accretion and the fluid flow is explored for a representative physical config-
uration. Then in §3 scaling arguments focus attention on the regime which
covers aircraft icing where the relative size of the ice accretion that first
affects significantly the non-ice behaviour is identified. Viscous effects and
multi-structure come rather to the fore here. Next §4 examines the viscous
and inviscid outer response, the primary area of concern for determining ice
shapes. Wet-side and dry-side layers are examined. (We note the analysis
also covers as a special case the viscous effects in an isothermal impact
without phase change as well as describing differences between impact with
and without freezing.) Following this §5 presents numerical findings for the
resulting integral system while §6 summarises briefly the innermost wall-
layer responses. Finally in §7 comparisons are made with experiments to
check on the present predicted orders of magnitude primarily, followed by
closing comments.

2. The interplay of accretion and flow

For definiteness let us consider a single two-dimensional supercooled cylin-
drical water droplet of radius R∗

D and temperature T ∗
D < T ∗

f , where T ∗
f is the

equilibrium solidification temperature and the z∗-axis is the generator of the
infinite cylinder. The cylinder moves towards the cylinder in the negative y∗-
direction, subject only to a gravitational acceleration g∗, through a void at a
pressure p∗∞ with a constant velocity U ∗

D, such that at time t∗ = 0 it impacts
onto a rough surface at the single point x∗ = y∗ = 0. The rough surface itself
lies on top of a fixed planar substrate at y∗ = −r∗

0 . The appearance of splash
jets is expected as the drop spreads but additionally there is the accretion
of ice over the wetted part of the rough surface, with an unknown water-ice
interface at a temperature T ∗

c ≤ T ∗
f , due to kinetic undercooling.

Throughout an asterisk denotes a dimensional quantity and its absence
denotes a dimensionless quantity. Thus the co-ordinates (x, y), the time t
and the corresponding velocity components (u, v) are made dimensionless
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8 J.W. Elliott & F.T. Smith

with respect to droplet radius R∗
D, representative droplet travel time R∗

D/U ∗
D

and typical speed U ∗
D respectively. We also define ρ∗

L , µ∗
L , σ ∗

L , K ∗
L c∗

p,L and
α∗

L = K ∗
L/(ρ∗

Lc∗
p,L) in turn to be the density, viscosity, surface tension, ther-

mal conductivity, specific heat and thermal diffusivity of the fluid, all assumed
constant, and p∗∞ + ρ∗

LU ∗2
D p and T ∗

D + (T ∗
f − T ∗

D)T to be the pressure and
temperature of the fluid. In non-dimensional terms the droplet is a unit circle
of supercooled fluid at zero temperature descending with unit speed with an
equilibrium fusion temperature of unity. Finally if T ∗

D + (T ∗
f − T ∗

D)TI is the
temperature of the accreted ice, then we define ρ∗

ice, K ∗
ice, cp,ice and α∗

ice to be
the corresponding (constant) values of the quantities for the ice phase. Con-
sequently the Reynolds number Re, Froude number Fr and Weber number
W e are defined according to

Re = ρ∗
LU ∗

D R∗
D

µ∗
L

, Fr = U ∗2
D

g∗ R∗
D

, W e = ρ∗
LU ∗2

D R∗
D

σ ∗
L

. (2.1a − c)

The gravity and capillary effects turn out to be negligible in the current real
context but are included for completeness at this stage. In addition the Prandtl
number Pr, Stefan number St and the kinetic underheating parameter β are
defined by

Pr = µ∗
Lc∗

p,L

K ∗
L

, St = c∗
p,L1T ∗

L∗
f

, β = U ∗
D

G1T ∗ , (2.1d − f )

where 1T ∗ = T ∗
f − T ∗

D > 0 is the difference between the drop tempera-
ture and the equilibrium fusion temperature T ∗

f , while L∗
f is the latent heat

of fusion at T ∗
f and the constant G is the kinetic coefficient characterising

the frequency of molecular bonding. Finally, following [71], we have the
capillary cooling parameter, 0, defined by

0 = T ∗
f

1T ∗
σ ∗

L

ρ∗
L R∗

D L∗
f

= T ∗
f

1T ∗
St

W e
Ec where Ec = U ∗2

D

c∗
p,L1T ∗ (2.1g)

is the Eckert number. Numerical values for the parameters in (2.1a-g) are
discussed at the end of this section.

We define y = h±(x, t) for |x | > d(t) as depicted in figure 1 to be the
unknown free surface shape, where x = ±d(t) are the turnover points with
h+(±d(t), t) = h−(±d(t), t). The surface roughness is given by y = r(x)
such that r(0) = 0 with r(x) ≥ −r0 together with the assumption of sym-
metry about x = 0, r(−x) = r(x), requiring only the solution in x > 0 to
be considered. That is we assume the droplet impacts at either a local min-
imum or maximum of the surface roughness, which may have a significant
limitation as far as the real application is concerned. The so-called rough-
ness is taken to be reasonably smooth in mathematical terms. Finally here
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Figure 1. Schematic representation of flow on a rough surface of height r , with unknown
interfaces at heights η (ice), h± (water droplet)

y = η(x, t) is the water-ice surface which is at a temperature Tc ≤ 1. The
situation (for r > 0) is sketched in figure 1 for early times. If u = (u, v, 0) is
the fluid velocity vector then within the drop the governing equations are

∇ · u = 0, (2.2a)[
∂

∂t
+ (u · ∇)

]
u = −∇ p + 1

Fr
(sin α0, − cos α0, 0) + 1

Re
∇2u, (2.2b)[

∂

∂t
+ (u · ∇)

]
T = 1

PrRe
∇2T . (2.2c)

The direction of the gravity effect depends on the constant angle α0. Next, the
boundary conditions account for continuity of velocity, temperature, fluxes
and stresses effectively at the given solid base, at the unknown ice-water
interface and at the unknown water-void free surface, supplemented by the
influences of capillary contributions and latent heat. At the ice-water inter-
face y = η(x, t) continuity of tangential flow, conservation of mass, and
continuity of temperature need to be applied. In addition there is a need to
balance the heat flowing into/out of the interface and the heat lost/gained by
solidification. Consequently

u + v
∂η

∂x
= 0, v − u

∂η

∂x
= (1 − ρ)

∂η

∂t
, (2.3a, b)

T = TI = Tc ≡ 1 + 1√
1 + η2

x

(
0

ρ
(
1 + η2

x

) ∂2η

∂x2
− β

∂η

∂t

)
, (2.3c)

[ ρ

St
− (1 − ρcp)(1 − Tc)

] ∂η

∂t
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= 1
Pr Re

[
K
(

∂TI

∂y
− ∂η

∂x
∂TI

∂x

)
−
(

∂T
∂y

− ∂η

∂x
∂T
∂x

)]
. (2.3d)

See [28], [36], [59], [71]. Here ρ = ρ∗
ice/ρ

∗
L < 1, cp = c∗

p,ice/c∗
p,L and

K = K ∗
ice/K ∗

L are the corresponding ratios for the parameters within the two
phases. In fact, due to the relative thinness of the accreted ice with or without
roughness, we can effectively set u = 0 at the ice-water interface.

In (2.3c) kinetic and capillary undercooling are modelled using a linear
Gibbs-Thompson relationship between the departure of the fusion tempera-
ture from equilibrium and both the solidification rate and curvature of the
ice-water interface. In (2.3d) we have assumed a similar linear departure for
the latent heat from its equilibrium value. For β = 0 = 0 we recover the
classical Stefan formulation for the solidification of a pure substance from
an undercooled melt, by a sharp front held at the equilibrium solidification
temperature T ∗

f and latent heat L∗
f . The simplified case ρ = cp = 1, cor-

responding to no change in density upon solidification, leads to the no-slip
condition at the interface.

At the void-water interface y = h±(x, t) the kinematic condition, conti-
nuity of temperature and a linear momentum balance between the stress and
surface force (see [71]) apply,

v = ∂h±

∂t
+ u

∂h±

∂x
, T = 0, n̂ · T · n̂ = κ

W e
, (2.3e)

where T = −pI + Re−1S is the Newtonian stress tensor with S = (∇ u) +
(∇ u)T . Here n̂ is the outward normal to the interface, directed from the drop
into the void, and κ = −∇ · n̂ = ∓h±

xx/(1 + h±2
x )3/2 is the dimensionless

curvature. For an inviscid fluid this reduces to the usual Laplace relation for
the jump in the pressure which in turn reduces to the Bernoulli condition
p = 0, or continuity of pressure, upon neglect of surface tension.

The relevant initial conditions at time t = 0 are

u = 0, v = −1, T = 0 for x2 + (y − 1)2 < 1, (2.4a − c)

h+(x, 0) = h0(x), η(x, 0) = r(x) ≥ 0, d(0) = h−(x, 0) = 0,
(2.4d − f )

which together with r(x) ≤ h0(x) = 1 − √
1 − x2 ensure that the circular

droplet initially impacts at a single point in the absence of ice accretion. Both
the icing and splash jet are localised to the vicinity of the droplet.

Finally, within the ice region, there is only conduction of heat subject
to continuity of temperature at the interface and zero heat flux at the given
rough solid surface at y = r(x). As discussed below, the zero heat flux con-
dition allows us to assume that the temperature distribution TI ≈ Tc, which
greatly simplifies (2.3d). Gaining insight into the whole system (2.2a)-(2.4f)
represents the central task below.
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The main application in mind is aircraft icing for which typical speeds
are of the order of V ∗(= U ∗

D) = 150 ms−1 and the typical droplet diameters
range from D∗(= 2R∗

D) = 40 µm to 400 µm, [3]: see also §7 below. Thus
the Reynolds number Re based on droplet radius is around 104 which is large
and the droplet is treated in most parts as inviscid as a first model, subject
to boundary-layer effects. The Weber number W e ≈ 105 is also large and so
surface tension effects can be excluded as a first approximation. The Froude
number is large (typically 107 or so) and the gravity effect is therefore negligi-
ble in the setting of this study. The Prandtl number is about 7-13 for water and
the capillary underheating parameter 0 is small (typically 10−5 − 10−6). We
shall assume that the Stefan number and the kinetic underheating parameter
are order unity. In fact St is wide ranging, from 10−2 to 10 say, and depends
on the temperature differences, whilst β is also very temperature-dependent
and speed-dependent.

3. Scaling arguments

We wish to extend the inviscid small-time analysis of [53] and [49] to incor-
porate both small surface roughness (earlier freezings), as described by [57],
and ice accretion. In the absence of solidification and surface roughness we
would expect d ∝ √

t for 0 < t ≪ 1, a result one can obtain purely from
geometric considerations. With solidification and roughness present the same
result can only apply in the sense of an order of magnitude as will be seen;
the importance of the outer regions studied in previous papers will also be
seen here but coupled now with inner regions because of the ice accretion.

3.1. ICE ACCRETION AND DIFFUSIVE EFFECTS

To understand the effect of kinetic undercooling in isolation, and based on
a one-dimensional thermal investigation (r = 0) for β = O(1), 0 = 0
and Re ≫ 1 by [64] amongst others, for ρ = c = 1, we might expect
two time intervals to apply. They come from comparing the y-scale due to
temporal growth in (2.2b) with the beta effect in (2.3c). Thus for relatively
early times the actively freezing layer and the frozen layer underneath are
given respectively by

y −η ∝ (RePr)− 1
2
√

t, η ∝ β−1t, for 0 < t ≪ β2 Re−1, (3.1a, b)

where TI ≈ Tc = O
[
(RePr)

1
2
√

t/β
]

≪ 1, or T ∗
c ≈ T ∗

D . For later times

β2 Re−1 ≪ t ≪ 1 there is a dual form

y − η = O
[
(RePr)−1β

]
, η = O(β−1t), for St > 1, (3.1c, d)
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12 J.W. Elliott & F.T. Smith

y − η ∼ η = O
[
(RePr)− 1

2
√

t
]

for St < 1. (3.1e)

In both cases the ice temperature TI ≈ Tc = O(1), and indeed Tc − 1 is
exponentially small for St < 1, or T ∗

c ≈ T ∗
f . The role of the Peclet number

RePr , independent of viscosity, is clear. The specific result η ∼ Re− 1
2 3

√
t

for St < 1, where the order-unity constant 3 satisfies the eigen-relation [71],
[61]

St = 1
2

√
πPrρ3erfc

[
1
2

√
Prρ3

]
e

1
4 Pr(ρ3)2

, (3.2)

matches to the classical (β = 0) similarity solution of the one-dimensional
Stefan problem for solidification of an undercooled melt with a square-root
accretion growth. In contrast, the analysis of the type given by [64] suggests
η ∼ γ t for St > 1 which is a range of Stefan number of some interest in the
present study. This faster linear solidification growth where the constant γ is
given by

γ = ρ

β
[
ρ − (1 − ρcp)

] (1 − 1
St

)
> 0 (3.3)

reflects the fact, see [61], that the classical one-dimensional Stefan problem
actually has no such similarity solution for St ≥ 1. One might argue that
the small time scale t = O(Re−1) models the rapid recalescence stage of
freezing, identified by [6] amongst others, in which the released latent heat
of solidification is used to raise the interfacial droplet temperature from T ∗

D to
the vicinity of the equilibrium freezing temperature T ∗

f .
As well as kinetic undercooling being important mathematically for both

the removal of singularities and non-existence of solutions found in the classi-
cal Stefan representation of solidification and melting processes, the algebraic
and exponential forms for the dependence of the undercooling on the interface
growth rate match the experimental data for a wide range of applications,
namely crystal growth, cellular alloy solidification, solid fuel combustion,
penetration of solvents into glassy polymers and oxidation of silicon. See
data in [5], [31], [7], [6] for example. In the configuration of current interest
a value of the Stefan number St greater than unity corresponds to the incident
droplet being severely undercooled.

3.2. THE MULTI-STRUCTURE

Motivation and a starting point indicating roughness effects are provided by
the inviscid structure of [57] for a small scaled time t ∼ ε2 where the constant
ε is small and positive. As indicated by figure 2 in which δ is ε−2 Re− 1

2 and
is small, there is a complicated interactive structure now in the presence of
ice formation. First there is an outer region I a close to the point of impact,
when x, y ∼ ε. This is a region of potential isothermal flow in which both
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Ice formation due to impact 13

velocities u, v are mostly O(1), the temperature T ≡ 0, and the pressure
response p ∼ ε−1 is large to balance the large acceleration. In addition, the
free surface shape has h+ ∼ ε2, h− ∼ ε3 and surface roughness has r ∼ ε2,
implying there is also a thin layer I b where y ∼ ε2. The scaling on roughness
is that which, as the roughness height is gradually increased, first affects the
evolution nonlinearly; this roughness height or the typical icing height can
also be used to specify the small parameter ε, and similar considerations hold
for the roughness length. To fully consider the solution we note there are
inner potential regimes I I a and I I I a, centred on the unknown moving point
of contact x = d where x − d, y ∼ ε2 and ε3, respectively, that enable the
flow to accommodate the impact. We also note that since Re ≫ 1 the problem
in region I is inviscid as indicated already but for the problem to remain
inviscid in regions I I and I I I the requirements ε ≫ Re−1 and ε ≫ Re− 1

2

apply. Finally there is an additional so-called splash-jet region I c+. This is a
thin layer of fast moving fluid downstream of the contact point where x ∼ ε,
y ∼ ε3 for which u is O(ε−2) and where the restriction ε ≫ Re− 1

4 ensures
the flow remains as if inviscid. This also tends to suggest that the later time
scale (3.1c,d) rather than (3.1a,b) is relevant here.

Ice accretion or solidification, at least for Prandtl number Pr of O(1),
occurs over viscous-like scales and therefore for the purpose of understand-
ing the accretion response we have to examine a thin inner viscous layer
satisfying the no-slip condition and the kinematic and temperature conditions
(2.3b,c) at the ice-water interface. In such a layer the vertical coordinate
ζ ≡ y − η(x̄, t̄) ≪ ε2 and so because of the vertical shift a Prandtl-like
transformation is adopted,

u = uL(x̄, ζ, t̄), p = pL(x̄, t̄), T = TL(x̄, ζ, t̄),

v = 1
ε2

(1 − ρ)
∂η

∂ t̄
+ 1

ε

∂η

∂ x̄
uL(x̄, ζ, t̄) + vL(x̄, ζ, t̄),

where x = εx̄ , t = ε2 t̄ . Here the case ρ = 1 would correspond to no volume
change upon solidification and no-slip at the ice-water interface. Finally, for
precision, r = ε2r̄(x̄) and d = εd̄(t̄) define the assumed known surface
roughness height and the unknown contact point respectively.

3.3. ICE ACCRETION IN DETAIL, UPSTREAM AND DOWNSTREAM

The conditions at the water-ice interface (2.3c,d) imply that for TL ∼ Tc

of O(1) with St of order unity the scaling η ∼ ε2/β allows for kinetic
undercooling. Continuity implies vL ∼ ζuL/ε whilst retaining the unsteady-
pressure balance of the outer region I a leads to pL ∼ ε−1uL . A fully unsteady
pressure-driven viscous sublayer Iv then gives rise to the scalings

uL

ε2
∼ η

ε2ζ
uL ∼ pL

ε
∼ uL

Reζ 2
. (3.4)

JEM_Supercooled_Droplet_rev1.tex; 9/01/2015; 11:18; p.13



14 J.W. Elliott & F.T. Smith

6

ζ ≡ y − η

?
η

- x

� O(ϵ) -

� O(ϵ2) -

�O(ϵ3)-

6

O(ϵ)

?

6

O(ϵ2)

?

6
O(ϵ3δ)

? 6O(βϵ4δ2) ?
6
O(ϵ

7
2 δ)

?

6
O(ϵ3δ)
?

6

O(ϵ3)

?

y = h+(x̄)

�
���

y = h−(x̄)

��	

I a

I b−

Iv−
I s−

I b+

I c+
Iv+

I I a

I I s− I Iv+
I I I a

I I I s
6

O(ϵ2/β)

?

6
O(ϵ3/β)

?

6O(ϵ4/β)?

Figure 2. The relatively fast solidification structure (St > 1), where the subscript s refers to
linear quasi-steady inner regions lying within the viscous (v) regions of a slower solidification
structure on the wet-side of the contact point; superscripts ± refer to dry (+) and wet (−)
sides.

This in turn gives rise to the orderings ζ ∼ η ∼ ε3δ, vL ∼ ζuL/ε = ε2δuL

where we recall δ = ε−2Re− 1
2 ≪ 1, which matches with the limit (3.1c, d) for

St < 1. The dynamics are linear provided the velocity uL ≪ ε−1, and indeed
matching to I a implies uL = O(1). We note then that η ∼ ε3δ ≪ ε2/β,
which corresponds to the classical Stefan problem (no undercooling) with
temperature Tc ≡ 1. An analysis of viscous sublayers I Iv and I I Iv similar
to that for inner regions I I a and I I I a respectively, where x −εd̄ = O(εn+1)
for n = 1, 2, then yields thicknesses ζ ∼ η ∼ ε(6+n)/2δ and velocities vL ∼
ε(4−n)/2δuL , uL = O(ε−n/2). The asymptotic structure is as depicted in figure
2, without the regions denoted ′s ′, and the accreted ice is indicated by the
shaded regions.

Alternatively if kinetic undercooling takes place within a sublayer I s−,
suggesting a quasi-steady linear viscous flow independent of the pressure,
then

η

ε2ζ
uL ∼ uL

Reζ 2
, η ∼ ε2

β
. (3.5a, b)
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Ice formation due to impact 15

This, in turn, implies the orderings ζ ∼ βε4δ2, vL ∼ ζuL/ε = βε3δ2uL with
βRe− 1

2 = βε2δ ≪ ε ≪ 1, which matches with the limit (3.1c,d) for St > 1.
Once again a similar analysis of viscous sublayers I I s and I I I s leads to
ζ ∼ βε4δ2, η ∼ ε2+n/β, vL ∼ βε3−nδ2uL , uL = O(ε−n/2) and a faster-
solidification structure as depicted in figure 2. Here the quasi-steady sublayers
denoted by the subscript s are much thinner than their slower solidification
counterparts which are denoted in figure 2 by the subscript v.

Given that there appear to be two sets of asymptotic structures (figure
2) depending on whether St ≷ 1 we observe that at the limit of the range
of validity of the above analysis, namely the earliest time when δ = O(1)

(ε ∼ Re− 1
4 ), the different inner sublayers I I Iv/s of figure 2 are identical if

β is of O(1) whilst the splash jet is viscous. This implied fundamental inner
interaction in which ε ∼ Re− 1

4 consists of the quasi-steady nonlinear classical
boundary-layer, subject to a prescribed stagnation-type slip-velocity and an
upstream-moving wall with the complications of ice-growth equivalent to
blowing or suction at the rigid wall. This governs the flow for all St and
incorporates both kinetic and capillary underheating provided the parameter
0 is O(Re− 1

2 ). It is at the heart of all subsequent small-δ innermost sublayers,
notably I I Iv+/I I I s in figure 2 except that subsequently, for such a sized
capillary parameter, underheating is negligible.

The flow solution for the above fundamental problem matches asymp-
totically to both viscous sublayers Iv−/I s− upstream of the moving contact
point whereas an interesting issue is encountered in matching the ’down-
stream’ form to the viscous sublayers Iv+ beneath the splash-jet, on the
’dry’ side of the contact point. Orders of magnitude suggest first that the
downstream asymptotic problem might reduce to one of solving the Blasius
equation for a moving wall, namely

f ′′′
B + 1

2
fB f ′′

B = 0, fB(0) = −C, f ′
B(0) = −1, f ′

B(∞) = 1. (3.6)

Here C = 0 corresponds to the absence of ice accretion, whilst C > 0 cor-
responds to a seemingly non-physical square-root growth in the ice thickness
into the splash jet. Unfortunately [72], who considered the case f ′

B(0) = −λ,
showed that solutions exist only for λ < λc ≈ 0.3541. Any hope that solid-
ification might alleviate this problem is dashed by the several authors, most
recently [73], who considered the case fB(0) = −C , f ′

B(0) = −λ. They
also found solutions for λ < λc but additionally that increasing C caused
λc → 0+. Instead we must use the evidence that a solid wall moving upstream
relative to the outer stream tends to produce flow separation and accompany-
ing re-scaling either of relatively confined form [74, 75] or of breakaway or
bursting form [76] both of which are highly unstable and lead readily to quite
abrupt transition to turbulence [77, 78, 79, 80]. Thus the viscous sublayer
flow Iv+ beneath the splash jet seems almost certain to be highly separated,
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Figure 3. The innermost asymptotic structure (St > 1)

transitional and turbulent in practice. The effect of the moving contact point
is to sweep away the turbulent flow to leave behind the laminar structure of
regions Iv−/I s−; yet the identification of such flow however limited it is
represents an intriguing property.

The above property in the ’downstream’ asymptote is the reason why
in the above figures no attempt is made to obtain precise scalings for the ice
thickness on the ’dry’ side of the contact point. Another intriguing issue here
is that the so-called dry side is in fact over-ridden by a comparatively thin
splash jet of water. It seems reasonable though on physical grounds for us
to expect there to be considerably more ice on the wetted side x < d(t) of
the contact point, where the majority of the liquid is available for removal of
heat by latent heat of conduction, than on the dry side x > d(t). With this in
mind let us reasonably suggest that η ≪ O(ε3δ) in region I downstream (the
dry side) of the contact point. It actually seems not entirely impossible that
the solidification is comparable on the two sides of the contact point but the
present approach works with a significant contrast between the wet-side and
dry-side features of accretion.

Closer in, very near the turnover position, figure 3 depicts the config-
uration. For the case of St > 1, the inner viscous region I I I s is linear.
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Ice formation due to impact 17

Supposing that at some point say X = d̄ the ice thickness η = ε4η̃ vanishes,
we would expect nonlinearity to re-assert itself and eventually the dynamics
of region I I Iv+ to govern. An inertial-viscous balance(

u − 1
ε

dd̄0

dt

)
∂u
∂x

∼ ∂p
∂x

∼ 1
Re

∂2u
∂ζ 2

implies ζ 2 ∼ ε5δ2x since u = O(ε−1), p = O(ε−2) in region I I I s. That is
Ŷ ∼ (X − d̄2)

1
2 where ζ ≡ y − η = O(ε4δ) and x − d = O(ε3) are the

scales for region I I Iv. One possibility would require the introduction of an
innermost viscous layer I V s with ζ = O(ε4δ2), the same thickness as I I I s,
when x−d = O(ε3δ2). This structure is depicted in figure 3. The downstream
asymptotic form of this innermost region involves a square root growth which
provides the starting form for the solution in I I Iv+. This smoothing of the
solution for St > 1 at the point where the ice accretion disappears does not
affect the issues with the downstream asymptotic form alluded to above.

4. The outer response and the ice shapes

The prediction of the ice shape produced by the impact is significant since it
enables comparisons to be made more readily with experiments in principle.
The prediction relies mostly on the interactive behaviour in the outermost
regions of the multi-structure although interesting features emerge also in the
inner regions around the ice.

Here and below the scalings from the previous section lead to the water-
flow/ice-shape interactions which involve quantities that are fully determined
in §5. As inferred above, we take t = ε2 t̄ and in this interval set x = εx̄ with
x̄ = O(1) with an assumed turnover (contact) point at x̄ = d̄0(t̄). In addition,
for x̄ > d̄0(t̄) the free surface is described by h+ = ε2h̄+(x̄, t̄) and there is a
surface roughness r = ε2r̄(x̄). We shall assume the kinematic underheating β
is of O(1) and the capillary undercooling 0 = ε20̃. Because of the difference
in accretion rates the water-ice interfacial height in x̄ < d̄0(t̄) is

η =
{

ε2
[
r̄(x̄) + εδη̄s(x̄, t̄)

]
for St < 1

ε2η̄(x̄, t̄) for St > 1 , (4.1)

with the difference in scales in (4.1) being due to the enhanced temperature
difference in effect for St greater than unity. It is found that the majority of the
flow where y ∼ ε is governed by inviscid dynamics but in addition to inviscid
sublayers, where y ∼ ε2, viscous and/or thermal wall layers are needed due
to the no-slip and wall-temperature conditions. In x̄ < d̄0(t̄) these are laminar
and, as suggested by (3.4)-(3.5), have y ∼ ε3δ for St < 1 and y ∼ ε4δ2 for
St > 1. The diffusive effects of heat conduction are most important here.
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18 J.W. Elliott & F.T. Smith

4.1. THE INVISCID OUTER REGION

In the inviscid outer region I a the vertical scale has y = ε ȳ with ȳ = O(1)
and the velocities and pressure are u = ū(x̄, ȳ, t̄), v = v̄(x̄, ȳ, t̄), p =
ε−1 p̄(x̄, ȳ, t̄) to leading-order. The governing equations now reduce to those
of unsteady potential flow,

∂ ū
∂ x̄

+ ∂v̄

∂ ȳ
,

∂ ū
∂ t̄

= −∂ p̄
∂ x̄

,
∂v̄

∂ t̄
= −∂ p̄

∂ ȳ
. (4.2a − c)

These are subject to the mixed boundary conditions

ū = ∂ Q̄
∂ x̄

(x̄, t̄), v̄ = (1 − ρ)
∂η̄

∂ t̄
at ȳ = 0+ for |x̄ | < d̄0(t̄),

(4.3a, b)

p̄ = 0, v̄ = ∂ h̄+

∂ t̄
(x̄, t̄) at ȳ = 0+ for |x̄ | > d̄0(t̄). (4.3c, d)

The unknown induced slip velocity and surface pressure are defined by
ū(x, 0+, t̄) = ∂ Q̄/∂ x̄ and p̄(x, 0+, t̄) = −∂ Q̄/∂ t̄ respectively. Condition
(4.3b) is the kinematic condition on the wetted ice surface, modified to ac-
count for a change in density upon solidification, whilst (4.3c) is the Bernoulli
condition on the free surface, linearised to apply on the dry region. In addition
from (2.4d-f) the initial conditions

h+(x̄, 0) = h̄0(x̄), η̄(x̄, 0) = r̄(x̄) ≤ h̄0(x̄), d̄0(0) = 0, (4.3e)

hold where h̄0(x̄) = 1
2 x̄2 and r̄(0) = 0 along with the far-field conditions

h+ ∼ h̄0(x̄) − t̄, η̄ → 0 as |x | → ∞. (4.3f )

This is consistent with the roughness height tending to zero at large distances.
The interaction must also satisfy the Wagner condition, namely

h̄+(x̄, t̄) = η̄(x̄, t̄) = r̄(x̄) at x̄ = ±d̄0(t̄)±, (4.3g)

for heights to coincide at the unknown moving contact point which is to be
determined. Symmetry of the solution about x̄ = 0 is assumed, while as
noted earlier the ice accretion is taken in (4.3g) to be comparatively little
downstream of the contact point.

The main novelty of the current work is the introduction of the ice ac-
cretion rate into the kinematic condition (4.3b) at least for Stefan number
St > 1 in addition to the presence of roughness; the regime St > 1 is of
intrinsic interest as well as being relevant to many applications. What we
wish to predict are the contact point x = d̄0(t̄), the ice shape η(x̄, t̄) and the
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free surface h̄+(x̄, t̄) for a given roughness r̄(x̄). As in [57] the solution to
(4.2-3) is found to have the form

h̄+(x̄, t̄) − h̄0(x̄)

(x̄2 − d̄2
0 (t̄))

1
2

= − 1
π

∫ d̄0(t̄)

−d̄0(t̄)

h̄0(ξ) − (1 − ρ)η̄(ξ, t̄) − ρr̄(ξ)

(x̄ − ξ)
(
d̄2

0 (t̄) − ξ 2
) 1

2
dξ (4.4)

for x̄ > d̄0(t̄), which relates the unknown free-surface shape to the unknown
accretion shape η̄ (to be determined below) and contact point d̄0(t̄) provided
that the physically acceptable condition

h+(x̄, t̄) ≥ r̄(x) for |x̄ | > d̄0(t̄) (4.5)

is satisfied. The contact point itself can be determined implicitly from (4.4)
by taking the farfield limit of large x̄ and using both the asymptotic condition
(4.3f) and the symmetry of the configuration to yield

t̄ = 2
π

∫ d̄0(t̄)

0

h̄0(ξ) − (1 − ρ)η̄(ξ, t̄) − ρr̄(ξ)(
d̄2

0 (t̄) − ξ 2
) 1

2
dξ. (4.6)

In particular for the case St < 1 or when there is no accretion, and η̄(x̄, t̄) ≡
r̄(x̄), (4.4), (4.6) reduce to the forms investigated by [57] for a given rough-
ness r̄ . Marching forward in time from the square-root solution d̄0 = 2

√
t̄ for

a smooth wall [57]. obtained solutions for increasingly large values of rough-
ness r̄ . For sufficiently large roughness forms the condition (4.5) was violated,
at which point a new multi-patched solution structure becomes needed. We
shall, at least initially, only consider those surface roughnesses which [57]
showed gave physically realistic solutions.

The solution (4.4) in general couples the unknown free-surface shape
with the unknown accretion shape η̄(x̄, t̄). Subsequent analysis of the wetted
sublayer I s− (see (4.19c) below) yields for x̄ < d̄0(t̄)

η̄(x̄, t̄) = r̄(x̄) + γ
[
t̄ − τ(x̄)

]
for St > 1 (4.7a)

where the constant γ is given by (3.3). The time τ
[
d̄0(t̄)

] = t̄ is the inverse
function to d̄0. Substitution of (4.7a) into (4.4)-(4.6) then yields

h̄+(x̄, t̄) − h̄0(x̄)

(x̄2 − d̄2
0 (t̄))

1
2

= − 1
π

∫ d̄0(t̄)

−d̄0(t̄)

h̄0(ξ) − r̄(ξ) − (1 − ρ)γ
[
t̄ − τ(ξ)

]
(x̄ − ξ)

(
d̄2

0 (t̄) − ξ 2
) 1

2
dξ

(4.7b)
for x̄ > d0(t̄), with

t̄ = 2
π

∫ d̄0(t̄)

0

h̄0(ξ) − r̄(ξ) − (1 − ρ)γ [t − τ(ξ)](
d̄2

0 (t̄) − ξ 2
) 1

2
dξ. (4.7c)
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Only for the case ρ ̸= 1 does ice accretion affect matters, caused by the non-
zero normal velocity at the wall. In the absence of roughness, r ≡ 0, the
simple square-root behaviour for the contact point is retained with

d̄0(t̄) =
√

λt̄ = 2
[{

1 + 1
2
(1 − ρ)γ

}
t̄
] 1

2

, (4.8a)

so that τ(x̄) = x̄2/λ, which results in a free-surface shape

h̄+
0 (x̄, t̄) = 1

2
x̄(x̄2 − d̄2

0 (t̄))
1
2 + (1 − ρ)

γ

λ

[
d̄2

0 (t̄) − x̄
{

x̄ − (x̄2 − d̄2
0 (t̄))

1
2

}]
.

(4.8b)
The results (4.8ba, b) are obviously key predictions for a smooth surface.
Finally, on approach to the contact point from below, as x̄ → d̄0(t̄)−, it can
be shown that the effective potential

Q̄(x̄, t̄) ∼ −S1(t̄)
[
d̄0(t̄) − x̄

] 1
2 + O

[
(d̄0 − x̄)

]
, (4.9)

where S1(t̄) = (2d̄0)
1
2 , a result that depends on surface roughness and ice

accretion only through the factor d̄0(t̄).

4.2. THE WETTED WALL LAYER FOR SLOW SOLIDIFICATION

A prime goal here is to determine the thermal behaviour of course but in-
vestigation of both flow and temperature is desirable because although the
important thermal response is found to uncouple from the flow response the
latter forms a significant part of the physics of the multi-structure. For rel-
atively slow accretion let us take y = ε2

[
r̄(x̄) + εδη̄s(x̄, t̄) + εδȲ

]
in the

upstream wetted inner layer Iv−; then for Ȳ = 0(1) in x̄ < d̄0 we expect a
solution

u = Ū (x̄, Ȳ , t̄), p = ε−1 P̄(x̄, Ȳ , t̄), T = T̄ (x̄, Ȳ , t̄), (4.10a − c)

v = εδ (1 − ρ)
∂η̄s

∂ t̄
+ ε

(
∂ r̄
∂ x̄

+ εδ
∂η̄s

∂ x̄

)
Ū + ε2δV̄ (x̄, Ȳ , t̄), (4.10d)

in view of the orders of magnitude present. At leading order therefore the
linearised unsteady viscous/thermal equations apply,

∂Ū
∂ x̄

+ ∂ V̄
∂Ȳ

= 0,
∂Ū
∂ t̄

− ρ
∂η̄s

∂ t̄
∂Ū
∂Ȳ

= ∂ P̄
∂ x̄

+ ∂2Ū
∂Ȳ 2

, (4.11a, b)

0 = −∂ P̄
∂Ȳ

,
∂ T̄
∂ t̄

− ρ
∂η̄s

∂ t̄
∂ T̄
∂Ȳ

= 1
Pr

∂2T̄
∂Ȳ 2

. (4.11c, d)

These equations are subject to the classical conditions

Ū = V̄ = 0, T̄ = 1,
ρ

St
∂η̄s

∂t
= − 1

Pr
∂ T̄
∂Ȳ

at Ȳ = 0, (4.12a − d)

JEM_Supercooled_Droplet_rev1.tex; 9/01/2015; 11:18; p.20



Ice formation due to impact 21

Ū → ∂ Q̄
∂ x̄

, T̄ → 0 as Ȳ → ∞. (4.12e, f )

Here (4.12e,f) ensure a match with the solution in I a provided the unknown
pressure P̄ = −∂ Q̄/∂ t̄ . The approach to the asymptotic form (4.12e) for
Ū is exponential, ruling out a possible algebraically decaying asymptotic
form because the corresponding logarithmic growth in V̄ would give rise to
anomalous terms of O(ε2 ln ε) in the outer solution. The balance in (4.11d)
makes apparent the uncoupling of the thermal response.

Although linear, the presence of the pressure gradient complicates mat-
ters with regard to the velocity profile. However, the temperature supports a
similarity solution of the form

T̄ = g(ξ̂ ) =
erfc

[
1
2

√
Pr
(
ξ̂ + ρ3

)]
erfc

[
1
2

√
Prρ3

] where ξ̂ = Ȳ√
t̄ − τ(x̄)

(4.13a)

which satisfies all conditions provided that the solution for η̄s(x̄, t̄) in x̄ <
d̄0(t̄) is given by

η̄s(x̄, t̄) = 3
√

t̄ − τ(x̄) where τ
[
d̄0(t̄)

] = t̄, (4.13b)

and the eigenvalue 3 satisfies the classical Stefan eigenrelation (3.2). The
solution (4.13b) satisfies the Wagner condition (4.3g), η̄s = 0 at x̄ = d̄0(t̄)
and yields the same square root growth in time t̄ at every point x̄ . The spatial
variation arises simply from the time τ(x̄) at which solidification first starts
to occur at that point x̄ , namely when it is the contact point x̄ = d̄0(τ ).
The absence of viscous influence on the ice growth here is confirmed by the
fact that in dimensional terms the ice-water interfacial shape in (4.13b) is
independent of viscosity.

The solution (4.13b) together with the form of the initiation time τ(x̄)
on approaching the turnover point from below suggests that

η̄s(x̄, t̄) = 3

(
dd̄0

dt̄

)− 1
2

(d̄0 − x̄)
1
2 + O

[
(d̄0 − x̄)

3
2

]
, (4.14a)

giving a square-root spatial decay in the ice thickness. Compare with (4.20a)
below. In addition, the singular behaviour for the pressure
P̄ ∼ 1

2 S1(t̄)dd̄0/dt̄(d̄0 − x̄)− 1
2 implied by (4.9) suggests a solution

Ū = 1
2

S1(t̄)

(d̄0 − x̄)
1
2

{
∂ f
∂ξ

+ O(d̄0 − x̄)
1
2

}
, T̄ = g(ξ), (4.14b, c)

where ξ = (dd̄0/dt̄)
1
2 (d̄0 − x̄)− 1

2 Y , g is again given by (4.13a) and the linear
similarity equation for f has

f (ξ) = ξ − √
πe

1
4 (ρ3)2

{
erfc

[
1
2

(ξ + ρ3)

]
− erfc

(
1
2
ρ3

)}
. (4.15)
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The response (4.14) can be shown to yield the scales for both the fairly passive
intermediate inner region I Iv−, when d̄0 − x̄ is O(ε), and the viscous region
I I Iv when d̄0 − x̄ is O(ε2). These regions are treated as distinct because
of their very different vertical and horizontal extents shown in figures 2,3
effectively.

4.3. THE WETTED WALL LAYER DURING FAST SOLIDIFICATION

Here as in the previous sub-section a prime goal is to determine the tem-
perature response. In relatively fast accretion the wetted wall layer is Is−

upstream. We take y = ε2
[
η̄(x̄, t̄) + ε2δ2Ỹ

]
and then for Ỹ = 0(1) in x̄ < d̄0

we propose a solution

u = Ū (x̄, Ỹ , t̄), p = ε−1 P̄(x̄, Ỹ , t̄), T = T̄ (x̄, Ỹ , t̄), (4.16a − c)

v = (1 − ρ)
∂η̄

∂ t̄
+ ε

∂η̄

∂ x̄
Ū + ε3δ2V̄ (x̄, Ỹ , t̄). (4.16d)

At leading order now the linearised boundary-layer and thermal equations
apply,

∂Ū
∂ x̄

+ ∂ V̄

∂Ỹ
= 0, −ρ

∂η̄

∂ t̄
∂Ū
∂Ȳ

= ∂2Ū

∂Ỹ 2
, −ρ

∂η̄

∂ t̄
∂ T̄

∂Ỹ
= 1

Pr
∂2T̄

∂Ỹ 2
,

(4.17a − c)
with the temperature uncoupled from the flow equations again. The system is
subject to the non-classical (undercooling) conditions

Ū = V̄ = 0, T̄ = 1 − β
∂η

∂t
, at Ỹ = 0, (4.18a − c)[

ρ

St
− (1 − ρcp)β

∂η

∂t

]
∂η

∂t
= − 1

Pr
∂ T̄

∂Ỹ
at Ỹ = 0, (4.18d)

Ū → ∂ Q̄
∂ x̄

, T̄ → 0 as Ỹ → ∞, (4.18e, f )

where (4.18e,f) ensure a match with the outer flow in I a, b. We obtain the
solution

Ū = ∂ Q̄
∂ x̄

[
1 − exp

(
−ρ

∂η̄

∂ t̄
Ỹ
)]

, T̄ =
(

1 − β
∂η

∂t

)
exp

(
−Prρ

∂η̄

∂ t̄
Ỹ
)

,

(4.19a, b)
which holds provided that the solution for η̄(x̄, t̄) in x̄ < d̄0(t̄) is given by

η(x̄, t̄) = r̄(x̄) + γ
[
t̄ − τ(x̄)

]
, (4.19c)

and the constant γ is given by (3.3). The independence of the ice growth
from any viscous influence here during fast solidification is similar to that for
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slow solidification. Here (4.19c) satisfies the Wagner condition (4.3g), which
here is η̄0 = r̄

[
d0(t̄)

]
at x̄ = d̄0(t̄), and the ice accretes linearly in time t̄ .

This contrasts with the result (4.13b) of slow accretion. The most relevant
comments regarding the spatial variation are nevertherless exactly the same
as in the previous section.

The shape behaviour (4.19c) together with the form of τ(x̄) now implies
that

η̄(x̄, t̄) − r̄(x̄) ∼ γ

(
dd̃0

dt̃

)−1

(d̄0 − x̄) + O
[
(d̄0 − x̄)2] , (4.20a)

so that we have a linear decay in the ice thickness. From (4.9) and the solution
(4.19a-c) this leads to the local velocity and thermal distributions

Ū = 1
2

S1(t̄)

(d̄0 − x̄)
1
2

{
1 + O(d̄0 − x̄)

1
2

} [
1 − exp

(
−ργ Ỹ

)]
, (4.20b)

T̄ = (1 − βγ ) exp
(
−Prργ Ỹ

)
. (4.20c)

The behaviour in (4.20a,b) yields the scales for the passive intermediate re-
gion I I s− when d̄0 − x̄ is O(ε), as well as those of the inner region I I I s
when d̄0 − x̄ is O(ε2). Again the regions are distinct as given in figures 2,3 in
schematic form.

4.4. THE DRY-SIDE SPLASH JET AND WALL LAYER

As discussed previously, our analysis does not need to give any indication
of the precise size of the ice accretion in x̄ > d̄0(t̄), i.e. downstream on
the dry-side. Nevertheless some further insights into both the dry-side splash
jet and wall layer are required for the multi-structure and to help provide
a proper context subject to the likely complex flow properties there which
are described just after (3.6). We recall that η − r = O(ε3δ) for St < 1
and η − r = O(ε2/β) for St > 1 upstream of the contact point and η −
r = O(ε4δ) or O(ε4/β) respectively in the immediate vicinity of the contact
point. Let us make the tentative assumption that η = ε2

[
r̄(x̄) + εδη̄R(x̄, t̄)

]
,

with roughness given by r = ε2r̄(x̄) and with h− = ε2
[
r̄(x̄) + εh̄−(x̄, t̄)

]
being the splash jet thickness. Four points then stand out.

First, the dry-side wall layer Iv+ then has
y = ε2

[
r̄(x̄) + εδη̄R(x̄, t̄) + εδȲ

]
for Ȳ = O(1) in x̄ > d̄0 and a solution

u = ε−1Ū (x̄, Ȳ , t̄), p = ε−2 P̄(x̄, Ȳ , t̄), T = T̄ (x̄, Ȳ , t̄), (4.21a − c)

v = εδ(1 − ρ)
∂η̄R

∂ t̄
+
(

∂ r̄
∂ x̄

+ εδ
∂η̄R

∂ x̄

)
Ū + εδV̄ (x̄, Ȳ , t̄). (4.21d)
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At leading order the nonlinear unsteady boundary-layer equations therefore
apply,

∂Ū
∂ x̄

+ ∂ V̄
∂Ȳ

= 0, (4.22a)

∂Ū
∂ t̄

+Ū
∂Ū
∂ x̄

+
(

V̄ − ρ
∂η̄R

∂ t̄

)
∂Ū
∂Ȳ

= −∂ P̄
∂ x̄

+ ∂2Ū
∂Ȳ 2

, 0 = −∂ P̄
∂Ȳ

, (4.22b, c)

∂ T̄
∂ t̄

+ Ū
∂ T̄
∂ x̄

+
(

V̄ − ρ
∂η̄R

∂ t̄

)
∂ T̄
∂Ȳ

= 1
Pr

∂2T̄
∂Ȳ 2

. (4.22d)

The main boundary conditions are

Ū = V̄ = 0, T̄ = 1,
ρ

St
∂η̄R

∂ t̄
= − 1

Pr
∂ T̄
∂Ȳ

at Ȳ = 0, (4.23a − d)

Ū → U ∗(x̄), T̄ → 0, P̄ → 0 as Ȳ → ∞. (4.23e − g)

Ice-shape displacement is effective in (4.22b) but there is an absence of any
kinetic undercooling contribution in (4.23b,c) due to the relative smallness
of the accreted ice shape on the dry side. Also the fact that ∂ P̄/∂Ȳ = 0
implies P̄ ≡ 0. Indeed (second point) from the inviscid splash-jet solution
for the region I c just outside the present layer the slip velocity satisfies the
zero-gravity shallow-water equations

∂U ∗

∂ t̄
+ U ∗ ∂U ∗

∂ x̄
= 0,

∂ h̄−

∂ t̄
+ ∂

∂ x̄

(
U ∗h̄−) = 0 (4.24a, b)

where the first equation also follows from the asymptotic form (4.23e). Match-
ing to the inner inviscid region I I I a yields [48]

U ∗ = 2
dd̄0

dt̄
, h̄−(x̄, t̄) = HJ (t̄) ≡ 1

8
π d̄0(t̄)

(
dd̄0

dt̄

)−1

(4.24c, d)

at x̄ = d̄0(t̄). The first-order hyperbolic equation (4.24a) can be solved by
characteristics to give

U ∗ = 2
dd̄0

ds
on t̄ = s + 1

2

(
dd̄0

ds

)−1 [
x̄ − d̄0(s)

]
(4.25a, b)

for some parameter s > 0, with the solution of (4.24b) for h̄− following
once the form of d̄0 and U ∗ is established. It is interesting that the splash-
jet solution (4.25a,b) depends on ice accretion and surface roughness only
through the form of d̄0(t̄). In the absence of roughness, where d̄0 = √

λt̄
from (4.8a), we can infer that HJ (t̄) = 1

2(π/λ)t̄
3
2 together with

U ∗(x̄, t̄) = x̄
t̄
, h̄−(x̄, t̄) = 1

2
πλ2 t̄4

x̄5
, (4.25c, d)
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which yields a splash jet that is infinitely long, constantly accelerating and
thinning. In the absence of roughness ice accretion tends to slightly speed up
and thin the splash jet. The interaction between these two effects is discussed
later.

Third, concerning the splash jet further, clearly shocks (hydraulic jumps)
are avoided when d̄ ′′

0 (t̄) < 0, and there is no intersecting of different straight-
line characteristic traces, or multiple intersection of the data curve x̄ = d̄0(t̄)
by a single trace. Although this clearly is the case in the absence of rough-
ness, the presence of roughness makes a similar statement necessarily more
difficult. In their investigation [57] did not consider the splash jet but were
concerned when roughness caused d̄ ′

0(t̄) → +∞, which was then usually
followed by an unphysical period during which d̄ ′

0(t̄) < 0, both being an
indication of a second impact, or touchdown with (4.5) no longer satisfied.
However before this occurs we must have d̄ ′′

0 (t̄) ≥ 0 arising. Thus it is
possible that roughness leads to hydraulic jumps in the splash jet prior to
touchdown, a matter investigated in detail in the next section.

Fourth, close to the contact point as x̄ → d̄0(t̄)+ the flow solution to the
boundary-layer problem (4.22)-(4.24) with a laminar assumption takes on a
two-tiered subform. (The tentative nature of the assumption should be noted,
given that complex flow is expected here.) Firstly there is an outer inviscid
tier for Ȳ = O(1), where Ū = U ∗(x̄, t̄) ≈ 2dd̄0/dt̄ , T̄ ≡ 0 corresponding
to uniform temperature. Secondly, for Ȳ = O(x̄ − d̄0)

− 1
2 there is an inner

Blasius-like viscous tier with

Ū =
(

dd̄0

dt̄

){(
1 + ∂ fB

∂ξ

)
+ O

[
(x̄ − d̄0)

1
2

]}
, T̄ = gB(ξ), (4.26a, b)

V̄ = (dd̄0/dt̄)
1
2

2(x̄ − d̄0)
1
2

{(
ξ
∂ fB

∂ξ
− fB − ρ3+

)
+ O

[
(x̄ − d̄0)

1
2

]}
, (4.26c)

where ξ = (dd̄0/dt̄)
1
2 (d̄0 − x̄)− 1

2 Y , and

η̄R(x̄, t̄) = L0(t̄) + 3+
(

dd̄0

dt̄

)− 1
2

(x̄ − d̄0)
1
2 + O

[
(x̄ − d̄0)

]
, (4.26d)

for some unknown constant 3+. Here L0(t̄) appears arbitrary, the temperature
profile is unknown and fB , gB satisfy the similarity equations

f ′′′
B + 1

2
fB f ′′

B = 0,
1

Pr
g′′

B + 1
2

fB g′
B = 0, (4.27a, b)

subject to
fB(0) = −ρ3+, f ′

B(0) = −1, (4.28a, b)

gB(0) = 1, g′
B(0) = 1

2
3+ Prρ

St
, (4.28c, d)
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f ′
B(∞) = 1, gB(∞) = 0. (4.28e, f )

Thus fB(ξ) satisfies the Blasius similarity equation (4.27a) or (3.6) subject to
constraints equivalent to a boundary layer having a uniform outer flow past
a reversed moving wall of equal uniform speed which is also subject to wall
blowing for 3+ ≥ 0. (There appears to be no solution of the above assumed
laminar form, thus confirming a more complex form is present as mentioned
in §3.3 earlier.) The assumed behaviour (4.26) near x̄ = d̄0 is in keeping with
the rest of the multi-structure, matching to both the intermediate region I Iv+
when x̄ − εd̄0 is O(ε2) and the inner region I I Iv when x̄ − εd̄0 is O(ε3).

5. Numerical findings

The results in this section are for Stefan numbers St greater than unity, which
is a range of some current concern and is fruitful in allowing some explicit
results. Solutions were computed for a given roughness shape r̄(x̄) which
was assumed to be symmetric about x̄ = 0, meaning that only the solution
in x̄ ≥ 0 need be considered. Here we follow [57] and consider the specific
forms

r̄(x̄) = r1e−r2(x̄−r3)
2 − e−r2r2

3 for 0 ≤ x̄ ≤ ā (5.1)

where r1, r2 and r3 are constants. The specific solutions are believed to show
the fundamental general points. A sufficiently large value of r2r2

3 is taken to
ensure that the induced surface slope is negligible at x̄ = 0 and r̄ decays
considerably downstream of the maximum point r3 before being reduced
fairly smoothly towards zero downstream of ā which has a large positive
prescribed value taken equal to 16 in every case. Since r̄(x̄) tends to zero for
large x̄ downstream we must have d̄0(t̄) ∼ √

λt̄ for large times t̄ where λ
is given by (4.8a). All calculations took ρ = 0.9 and differing values of γ ,
defined by (3.3), so that K = (1 − ρ)γ took the values 0, 0.5, 1.0, 1.5 and
2.0. We note that large values of γ correspond to small β values.

Equation (4.7c) is first solved by quadrature to obtain the relation t̄ =
τ(d̄0), which is then inverted to give the solution d̄0(t̄). Substitution into
(4.7a) then gives the shape of the ice surface whereas (4.7b) yields the shape
of the free surface.

In the first case a mild roughness shape is considered where r(x) is given
by (5.1) with r1 = 18, r2 = 0.124 and r3 = 8. Figure 4 shows the plot of the
contact point d̄0(t̄) and its speed d̄ ′

0(t̄) and figure 5 (a)-(d) show profiles of
the free-surface shape for various fixed values of d̄0(t̄). It was found that the
larger the value of γ , the quicker the contact point reached a given station. It
can be seen that both the ice shape and the free-surface shape deform in the
vicinity of the contact point. For this case the entire surface can be wetted.
In more detail results for various values of the scaled solidification-growth
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Figure 4. The contact point position d̄0(t̄) [on the left] and speed d̄ ′
0(t̄) [on the right] for a

relatively shallow surface roughness, for K = (1 − ρ)γ = 0, 0.5, 1.0, 1.5, 2.0. The dashed
curves denote the analytic form (4.8a) without roughness.
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Figure 5. The ice thickness η̄, free surface h̄ and comparatively shallow surface roughness r̄
as in figure 4, when d̄0 = 2, 4, 6 and 8, for K = (1 − ρ)γ = 0, 0.5, 1, 1.5 and 2.
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Figure 5. The ice thickness η̄, free surface h̄ and comparatively shallow surface roughness r̄
as in figure 4, when d̄0 = 2, 4, 6 and 8, for K = (1 − ρ)γ = 0, 0.5, 1, 1.5 and 2.
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parameter K = (1−ρ)γ are explored in figure 4. The progress of the contact
point is monotonic in time for the mild roughness and the speed of movement
increases with increasing values of the parameter with a noticeable peak aris-
ing in the speed as plotted on the right in the figure. The broad trend shows
roughness delaying the contact point a little, apart from some exceptions. In
figure 5 (a)-(d) there is no ice initially when the contact point is at a scaled
distance of zero of course but depending on γ the ice first forms on the left
behind the contact point and is parabolic in shape by the time the scaled
distance reaches 2. Inflectional ice profiles emerge between the distances of
2 and 4 and become more pronounced at distance 6, as the distortion of the
free-surface shape then becomes clear above the roughness prior to the free
surface riding over the top of the roughness.

In the second case a steep roughness shape is taken which again has the
Gaussian form (5.1) but here r1 = 22, r2 = 1.125 and r3 = 8. Figure 6
shows a plot of the contact motion and its speed. As found by Ellis et al, in
the absence of icing (γ = 0) the contact point moves over the steep surface
only until a stage where it appears as if the contact point suddenly moves
backwards in time, a physically unrealistic situation. The explanation for this
is provided by figure 7 (a)-(d) which gives the ice and free-surface shapes.
At some point prior to the unphysical behaviour arising a second touchdown
occurs near the top of the roughness. The addition of icing causes a reduction
in the nonphysical motion of the contact point. The effect of this is that the
contact point can move further along the roughness before the solution based
on the formal use of (4.7c) breaks down. Indeed it becomes feasible that for
a given roughness interactive solutions which terminate without icing can
continue to hold with sufficient icing that the entire surface is wetted.

To complete the calculations is the marginal case in which a second
touchdown of the droplet nearly occurs in the absence of icing. The marginal
case has the values r1 = 22, r2 = 0.1125 and r3 = 8 and its results are
given in figures 8 and 9. The contact-point motion in figure 8 shows trends
resembling those in figure 6. Likewise in figure 9 (a)-(d) the ice growth is
broadly similar to that observed in figure 4 apart from the enhanced inflec-
tional shapes found at scaled distances of 4, 6. The behaviour of the free
surface is also broadly similar except for the nearly tangential departure seen
in figure 8(c).

Ellis et al. derived a condition to determine whether a second touchdown
occurs or not. Their first suggestion, namely that a solution is physically valid
until d̄ ′

0 → ∞, was rejected because it corresponds to an infinite speed of the
contact point, which runs counter to the neglect of compressibility effects.
Moreover their results established that an impact actually occurs when the
fluid surface lies tangentially across the rough surface, forming a contact line
rather than a contact point. This ensures that as the wetting continues the
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0(t̄) for a comparatively steep surface
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form (4.8a) without roughness. A breakdown or unphysical response is emphasized by the
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contact point motion resumes from the far end of the contact line, causing a
sudden jump in the position of the contact point.

The calculations show that surface roughness alone without additional
icing is sufficient to alter the nature of the contact speed d̄ ′

0(t̄). Even for
the mild case (figure 4) both a local minimum and maximum in d̄ ′

0(t̄) arise,
implying a change in sign in d̄ ′′

0 (t̄). For steep roughness (figure 6) we have
both d̄ ′

0(t̄) → ±∞ and multivaluedness, both initially identified as criteria for
a touchdown by [57]. The effect of ice accretion is intriguing since it seems
able to both increase (mild figure 4) and reduce (marginal figure 8) the local
maximum in the contact speed d̄ ′

0(t̄), the latter reinforcing the above sugges-
tion that icing helps avoid a touchdown. This confirms that newly formed ice
can act as roughness does, bearing in mind that the present roughness has
a positive height. The splash-jet solution (4.25) is represented by the plots
of the characteristic traces given in figures 10 and 11 for the mild and steep
roughness cases with ice accretion. Clashings and crossings which are clear
in the two figures are an important extra feature that depends somewhat on
the value of K and hence on the ice-growth rate γ of (3.3) and density ratio ρ.
Even for the mild slope the change in d̄ ′

0(t̄) causes characteristic traces which
initially fan out from the data curve t̄ = τ(x̄), but subsequently converge and
intersect one another. (See comments on splash and jets in section 1). This
indicates the presence of a hydraulic jump. Similar comments hold with or
without ice accretion and for the case of a steep slope, where additionally
we have characteristic traces re-intersecting the data curve, which likewise
might be regarded as a criterion for touchdown. These all indicate that the
inviscid splash jet (4.25) must then be altered, causing (if nothing else) some
further restructuring of the viscous sublayer beneath it. Physically one main
repercussion here for the more severe roughnesses is that jumps or sudden
movements of the contact point, of the ice shapes and of the free surface
are likely to take place under certain conditions. The normal momentum of
the original outermost flow is converted by impact into tangential momen-
tum which is sufficient to sweep the droplet over many roughnesses with or
without new icing. This sweep effect led by the moving contact point may
in certain cases be hindered or partially blocked by some existing roughness
shapes or pre-existing ice but apart from changes in the splash-jet dynamics
which may be a secondary influence altogether that blockage attempt can be
counteracted by jumps of the contact-point movement due to the strength of
the tangential momentum.

6. The inner layer responses

The outer interactions found in the previous two sections determine the quan-
tities of most significance to the overall properties of the impact flows with
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Figure 9. The ice thickness η̄, free surface shape h̄ and marginal surface roughness r̄ as in
figure 8, when d̄0 = 2, 4, 6 and 8, for K = (1 − ρ)γ = 0, 0.5, 1, 1.5 and 2. The free surface
is seen to lie tangentially on the rough surface at d̄0 = 4, only for K = (1 − ρ)γ = 0.
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Figure 9. The ice thickness η̄, free surface shape h̄ and marginal surface roughness r̄ as in
figure 8, when d̄0 = 2, 4, 6 and 8, for K = (1 − ρ)γ = 0, 0.5, 1, 1.5 and 2. The free surface
is seen to lie tangentially on the rough surface at d̄0 = 4, only for K = (1 − ρ)γ = 0.

JEM_Supercooled_Droplet_rev1.tex; 9/01/2015; 11:18; p.37



38 J.W. Elliott & F.T. Smith

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10
Mild: K=1.0

distance, x

tim
e,

 t

Figure 10. Characteristic curves for the splash jet for a shallow surface roughness with ice
accretion as in figures 4,5, for K = (1 − ρ)γ = 1.0.
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solidification and comparing with experiment as will be shown in the next
section. The inner near-wall effects touched on in §4 are also of much interest
in terms of completing the multi-structure of figure 2 especially near the foot
of the moving contact point as well as demonstrating the likely restricted
region of turbulence (see references in §3) and details of these are available
from the authors on request.

In particular matching confirms the viscous flow very near the turnover
position to be a combination of most likely separating, abruptly transitional
and turbulent in reality. This result is mitigated however by the fact that the
moving contact point sweeps away the turbulent flow to leave behind a lam-
inar structure. The section below accordingly tends to concentrate on overall
effects produced by the outer interactions.

7. Experimental comparisons and closing remarks

Comparisons with experiments and the links with a body of experimental and
engineering work along with practical findings are investigated in §7.1 below
followed in §7.2 by concluding remarks.

7.1. COMPARISONS WITH EXPERIMENTS

The body of relevant experimental and engineering work provided in the
comprehensive [70] report enables connections to be made between practical
results and our investigation; see also other interesting experimental aspects
in [5], [31], [7], [6]. [70] includes some smaller-scale data in addition to
larger-scale data on ice accretion. Thus the droplet diameters of 15-100 mi-
crons or more are typically of concern according to [81] (page 1-3 of [70])
as in the present study, while standard values of 20 microns and a maximum
value of 50 microns are quoted by [82] (page 3-27) again in keeping with the
present work. The contribution [82] is mostly concerned with ice shapes and
their effects on aerodynamics and safety and it also (page 3-31) highlights the
appropriate ranges of temperatures as 32F to −40F, or 0C to −15C, confirm-
ing the range given in our introduction, while it shows (pages 3-8, 3-11) an
average icing rate of 97 mm/hour which given the different operative condi-
tions is not far quantitatively from the prediction range presented earlier in
this subsection. Interesting effects of temperature and droplet size are shown
on pages 3-15, 3-16, and the use of roughness is confirmed as a surrogate
for built-up icing on page 3-19. Later in the report [83] (pages 4-4,4-8,4-9)
indicate parameters for example on time scales with which the theory here
connects, whereas the point that ice roughness is very significant is demon-
strated on pages 4-5,4-16. [84] show further useful parameters numerically
(page 5-8) and in particular graphs of results of accreted roughness versus
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time (page 5-10, 5-11) which are fairly close to our specific predictions as
described next. (Encouragement for further research of this kind is seen on
pages 5-12, 5-13 of the same contribution.)

Comparisons are made in our figure 12 between the current theoretical
predictions and the specific case of [85], [35] which is highlighted in figure 5-
18 of [70]. The comparisons take into account the fact that St tends to be less
than unity in most aircraft icing settings. For the representative single droplet
the theory predicts approximately as an interpretation that the ice spreads in
the horizontal direction x∗ to about

√
2 times the droplet diameter L∗ (which

is 2R∗
D) as a typical value and spreads vertically in y∗ to a height H ∗ of at least

Re−1/2L∗ for a first approximation which may be a lower bound. The pre-
existing surface roughness or ice due to previous droplets perhaps reduces
the

√
2 factor to unity while the duration of the process may be taken as

L∗/U ∗
D, the characteristic droplet travel time. Working with the above and

considering the above figure we take 20 microns for L∗ and the value 104

for Re. Then one droplet yields a height H ∗ of 10−2 × 20/106 m, that is
2 × 10−7 m. (A typical 1 m value for the spanwise distance scale is taken
where necessary.) Moreover the low liquid water content LWC of 0.5g/m3

implies in broad terms many droplets in the m3 cube: say about 2,000 (if we
allow for 20-40 micron drop diameters). On the other hand those that land on
a specific piece of existing ice do so with a small probability, of only about
Re−1/2 say, from comparing the ice thickness with the cube thickness and
attempting to adjust for oblique impacts. So that probability is about 10−2.
Hence only around 20 of the droplets actually impact on the existing ice piece
per second. Impacts are thus say 20 droplets per second at an incident speed of
150 mph, i.e. about 50 m/s, while allowing for a free-stream speed as distinct
from the near-stagnation speed near the front of the body in the experiments.
See also next-but-one paragraph. Hence a height H ∗ is suggested as 20 ×
2/107 m, in a second, leading to the vertical accretion velocity being around
4 × 10−6 m/s. This gives an approximate estimate of 0.25 mm/min. (A lower
Reynolds number of 103 would reduce the estimate by a multiplicative factor
of 1/

√
10 and a doubling of the droplet diameter would increase the estimate

by a multiplicative factor of 2.) That value lies well within the experimental
range for AGARD’s figure 5-18 as the present figure 12 indicates by means
of three lines marked A, B, C which represent the estimate of 0.25 mm/min
and the influences of changing Re and droplet size respectively.

Various factors may increase or decrease the estimate. There are also
many limitations to acknowledge of course and so the comparisons are made
tentatively. The theoretical details explored so far here have the time t∗ as-
sumed comparatively small which is observed in figure 12 to be when the
experimental and theoretical trends do agree most whereas predictions for
later times must be regarded as extrapolations; numerous real effects as men-
tioned in the paper are neglected; the practical situations are very complex as
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Figure 12. Ice thickness vs time. Comparisons between present predictions (thick solid lines
A,B,C) for small times and experimental measurements (black squares with error bars shown)
and engineering modelling (open circles) of [85], [35]. Case B is obtained from base case A
by increasing the Reynolds number while case C corresponds to increased droplet size.

[70] makes clear. Influences in the surrounding air motion, the surface tension
and pre-layers of water are neglected. Above all perhaps is the feature that the
model is a two-dimensional one dealing with the flow-solidification interplay
for only a single droplet. By contrast on the positive side the theory is built
from first principles, it is analytic predominantly and certain major aspects
are included, with the effects of many droplets freezing being attributed to
added surface roughness.

7.2. CLOSING COMMENTS

The present theoretical study potentially opens up several new avenues of
research in important application areas and the comparison in figure 12 at-
tests to the potential practical value. Also the proportion of the droplet liquid
volume frozen during the small-time impact behaviour of a single droplet
can be predicted, as O(Re− 1

2 ) or approximately 1%, and the asymptotic ap-
proach and comparisons confirm the relevance of a 1-D phase-change prob-
lem extended over many droplet impacts. In aircraft-icing super-cooled water
droplets impact on the wing when it flies through certain freezing conditions.
These droplets can freeze immediately or gradually on impact and cause ice

JEM_Supercooled_Droplet_rev1.tex; 9/01/2015; 11:18; p.41



42 J.W. Elliott & F.T. Smith

structures to form on the aircraft. This in turn can result in a loss of lift and
an increase in the drag, and, in the extreme case, may lead to the crashing of
the aircraft, with potential fatalities.

The major result of this study, supplementary to the finding of plausible
agreement with experiments and engineering models in §7.1 and figure 12,
has been to incorporate ice growth systematically into a model soon after
the impact of a supercooled droplet onto a solid surface. In addition we have
combined its effect with surface roughness produced by previous impacts
for instance, subject to fairly reasonable assumptions on the ranges of the
Reynolds, Weber, Stefan numbers and other parameters. Without any surface
roughness the influence of icing can be to increase or decrease the spreading
of the droplet. Given that the major influence of surface roughness alone is
to slow the spreading of a droplet as in [57], the combination of the two
effects is likely to be difficult to immediately deduce. It may be whilst surface
roughness acts to keep the droplet concentrated in a perhaps protected region,
the ice growth can work against this, leading to the propulsion of unfrozen
water to unprotected areas.

An extra facet is the incorporation of the effects of viscosity into a
droplet model which traditionally has in the main been described using a
purely inviscid description. This in itself has led to subtleties regarding the
existence of laminar viscous-flow solutions, which leads on to the inference
described in §3 of turbulent or semi-turbulent pre-flow. However it is seen
that the effect of the moving contact point is to sweep away the limited area
of transition to turbulent flow downstream and ensure the laminar analysis
remains valid. The splash jet preceding the contact point is pushed ahead and
is decelerating, which physically tends to induce turbulent flow there, while
the follow-up viscous layer is pulled along by the dominant momentum of the
jet-root region. Another extra facet to be explored concerns the substantial
changes observed here within the splash jet in the presence of icing with or
without wall roughness. These changes are able to induce hydraulic jumps.
The alternative of comparable ice accretion on the wet and dry sides of the
contact point should also be noted at this point. Further mention should be
made of one limitation of the current work which is that the results are rather
limited to special cases as a means of demonstrating the major features de-
scribed above. Clearly any cases where the condition (4.5) for a single contact
point is not satisfied and so possible multiple contact points or multi-patches
occur need to be investigated much further. Thus the current analysis and
numerical results are for droplet impacts on a rough surface with the added
complication of icing, for certain cases only. The icing spread alone can be
much faster than the 2

√
t law found in the absence of icing while the in-

fluence of surface roughness then works against such a simple description.
The present study is intended to help quantify the two opposing effects; the
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comparisons and links described in §7.1 seem to give the present approach
quite substantial support.
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