16,227 research outputs found

    Splashing of liquids: interplay of surface roughness with surrounding gas

    Full text link
    We investigate the interplay between substrate roughness and surrounding gas pressure in controlling the dynamics of splashing when a liquid drop hits a dry solid surface. We associate two distinct forms of splashing with each of these control parameters: prompt splashing is due to surface roughness and corona splashing is due to instabilities produced by the surrounding gas. The size distribution of ejected droplets reveals the length scales of the underlying droplet-creation process in both cases.Comment: 6 pages, 6 figure

    Britishness, Identity and Belonging

    Get PDF

    Liquid drop splashing on smooth, rough and textured surfaces

    Full text link
    Splashing occurs when a liquid drop hits a dry solid surface at high velocity. This paper reports experimental studies of how the splash depends on the roughness and the texture of the surfaces as well as the viscosity of the liquid. For smooth surfaces, there is a "corona" splash caused by the presence of air surrounding the drop. There are several regimes that occur as the velocity and liquid viscosity are varied. There is also a "prompt" splash that depends on the roughness and texture of the surfaces. A measurement of the size distribution of the ejected droplets is sensitive to the surface roughness. For a textured surface in which pillars are arranged in a square lattice, experiment shows that the splashing has a four-fold symmetry. The splash occurs predominantly along the diagonal directions. In this geometry, two factors affect splashing the most: the pillar height and spacing between pillars.Comment: 9 pages, 11 figure

    Electroneutrality and Phase Behavior of Colloidal Suspensions

    Full text link
    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-H\"uckel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Linearized theories then predict bulk phase separation of deionized suspensions only when expanded about a physically consistent (closed) reference system. Lower-dimensional systems (e.g., monolayers, small clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.Comment: 12 pages, 5 figures. Discussion clarified, references adde

    Chronic ETA receptor blockade prevents endothelial dysfunction of small arteries in apolipoprotein E-deficient mice

    Get PDF
    Objective: This study investigated whether endothelial dysfunction occurs in mesenteric arteries of apoE-deficient mice and determined the role of endothelin (ET)-1, which is increased in human atherosclerosis, using an orally active endothelin ETA receptor antagonist. Methods: ApoE-deficient and C57BL/6J control mice were fed for 30 weeks with normal chow or high-fat Western-type diet alone or in combination with darusentan (LU135252; 50 mg/kg/day). Vasomotor reactivity of isolated small mesenteric arteries (I.D. 200-250 ÎĽm) was studied in vitro under perfused and pressurized conditions. Results: In both mouse strains, about one fourth of the endothelium-dependent relaxant response to acetylcholine was insensitive to inhibition by l-NAME and indomethacin. In mesenteric arteries of apoE-deficient mice on Western-type diet, increased intima-media thickness and levels of endothelin-1 protein were observed. In addition, NO-mediated endothelium-dependent relaxation to acetylcholine was reduced without affecting l-NAME/indomethacin insensitive relaxation and contractions to endothelin-1 and serotonin were enhanced. Treatment with darusentan normalized vascular structure, NO-mediated relaxation to acetylcholine and contractions to endothelin-1 and serotonin without affecting blood pressure or plasma cholesterol levels. Conclusions: Severe hypercholesterolemia in apoE-deficient mice is associated with attenuation of NO-mediated relaxation to acetylcholine and increased vascular endothelin-1 content. Chronic ETA receptor blockade may provide a new therapeutic approach to improve NO-mediated endothelium-dependent vasomotion in small arterie

    High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    Full text link
    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6Ă—1040.6\times10^4 photons/(sâ‹…\cdotmWâ‹…\cdotMHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering

    Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure

    A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version

    Full text link
    We consider a dynamic vehicle routing problem with time windows and stochastic customers (DS-VRPTW), such that customers may request for services as vehicles have already started their tours. To solve this problem, the goal is to provide a decision rule for choosing, at each time step, the next action to perform in light of known requests and probabilistic knowledge on requests likelihood. We introduce a new decision rule, called Global Stochastic Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing decision rules, such as MSA. In particular, we show that GSA fully integrates nonanticipativity constraints so that it leads to better decisions in our stochastic context. We describe a new heuristic approach for efficiently approximating our GSA rule. We introduce a new waiting strategy. Experiments on dynamic and stochastic benchmarks, which include instances of different degrees of dynamism, show that not only our approach is competitive with state-of-the-art methods, but also enables to compute meaningful offline solutions to fully dynamic problems where absolutely no a priori customer request is provided.Comment: Extended version of the same-name study submitted for publication in conference CPAIOR201
    • …
    corecore